By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitat...By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitation is derived. The evolution properties of the multisoliton excitation are investigated and some novel features or interesting behaviors are revealed. The results show that after interactions for dromion-dromion, solitoff-solitoff, and solitoff-dromion, they are combined with some new types of localized structures, which are similar to classic particles with completely nonelastic behaviors.展开更多
Internal reformation of low steam methane fuel is important for the high efficiency and low cost operation of solid oxide fuel cell. Understanding and overcoming carbon deposition is crucial for the technology develop...Internal reformation of low steam methane fuel is important for the high efficiency and low cost operation of solid oxide fuel cell. Understanding and overcoming carbon deposition is crucial for the technology development. Here a multi-physics model is established for the relevant experimental cells. Balance of electrochemical potentials for the electrochemical reactions, generic rate expression for the methane steam reforming, dusty gas model in a form of Fick's model for anode gas transport are used in the model. Excellent agreement between the theoretical and experimental current-voltage relations is obtained, demonstrating the validity of the proposed theoretical model. The steam reaction order in low steam methane reforming reaction is found to be 1. Detailed information about the distributions of physical quantities is obtained by the numerical simulation. Carbon deposition is analyzed in detail and the mechanism for the coking inhibition by operating current is illustrated clearly. Two expressions of carbon activity are analyzed and found to be correct qualitatively, but not quantitatively. The role of anode diffusion layer on reducing the current threshold for carbon removal is also explained. It is noted that the current threshold reduction may be explained quantitatively with the carbon activity models that are only qualitatively correct.展开更多
文摘By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitation is derived. The evolution properties of the multisoliton excitation are investigated and some novel features or interesting behaviors are revealed. The results show that after interactions for dromion-dromion, solitoff-solitoff, and solitoff-dromion, they are combined with some new types of localized structures, which are similar to classic particles with completely nonelastic behaviors.
基金This work was supported by the National Basic Research Program of China (No.2012CB215405), the National Natural Science Foundation of China (No.11374272), and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20123402110064).
文摘Internal reformation of low steam methane fuel is important for the high efficiency and low cost operation of solid oxide fuel cell. Understanding and overcoming carbon deposition is crucial for the technology development. Here a multi-physics model is established for the relevant experimental cells. Balance of electrochemical potentials for the electrochemical reactions, generic rate expression for the methane steam reforming, dusty gas model in a form of Fick's model for anode gas transport are used in the model. Excellent agreement between the theoretical and experimental current-voltage relations is obtained, demonstrating the validity of the proposed theoretical model. The steam reaction order in low steam methane reforming reaction is found to be 1. Detailed information about the distributions of physical quantities is obtained by the numerical simulation. Carbon deposition is analyzed in detail and the mechanism for the coking inhibition by operating current is illustrated clearly. Two expressions of carbon activity are analyzed and found to be correct qualitatively, but not quantitatively. The role of anode diffusion layer on reducing the current threshold for carbon removal is also explained. It is noted that the current threshold reduction may be explained quantitatively with the carbon activity models that are only qualitatively correct.