Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff...Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.展开更多
The goal of the present paper is to expand already published works in the frame of"Banded speed cosmology" (BSC). In particular this paper gives validated values for physical quantities not so far investigated in ...The goal of the present paper is to expand already published works in the frame of"Banded speed cosmology" (BSC). In particular this paper gives validated values for physical quantities not so far investigated in previous publications, i.e., the number of individual physical entity in the universe, as well as the maximum value for acceleration. Validates values mean identical quantities from a numerical point of view obtained with different theoretical procedures, additionally compared with data based on NASA observations with Planck probe.展开更多
The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitati...The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.展开更多
Quantum correlations in Werner derivatives are studied with two different approaches, i.e., measurement- induced disturbance (MID) [Phys. Rev. A 77 (2008) 022301] and ameliorated MID (AMID) [J, Phys. A 44 (2011...Quantum correlations in Werner derivatives are studied with two different approaches, i.e., measurement- induced disturbance (MID) [Phys. Rev. A 77 (2008) 022301] and ameliorated MID (AMID) [J, Phys. A 44 (2011) 352002]. They are derived via strict deductions with MID while numerically calculated via the measurement optimization with AMID. Interestingly, quantum correlations captured with both approaches are completely coincident. Moreover, some distinct features of the quantum correlations and their underlying physics are exposed via analyses and discussions.展开更多
基金supported by the National Nature Science Foundation of China(No.41474112)the National Science and Technology Major Project(No.2017ZX05005-004)
文摘Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.
文摘The goal of the present paper is to expand already published works in the frame of"Banded speed cosmology" (BSC). In particular this paper gives validated values for physical quantities not so far investigated in previous publications, i.e., the number of individual physical entity in the universe, as well as the maximum value for acceleration. Validates values mean identical quantities from a numerical point of view obtained with different theoretical procedures, additionally compared with data based on NASA observations with Planck probe.
基金Supported by the National Natural Science Foundation of China (No.40637034, 40974015)the National 863 Program of China (No.2006AA12Z211)
文摘The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20103401110007 and 20123401110008the National Natural Science Foundation of China under Grant Nos.11375011,10975001,51072002,and 51272003+1 种基金the Program for Excellent Talents at the University of Guangdong Province(Guangdong Teacher Letter[1010]No.79)the 211 Project of Anhui University
文摘Quantum correlations in Werner derivatives are studied with two different approaches, i.e., measurement- induced disturbance (MID) [Phys. Rev. A 77 (2008) 022301] and ameliorated MID (AMID) [J, Phys. A 44 (2011) 352002]. They are derived via strict deductions with MID while numerically calculated via the measurement optimization with AMID. Interestingly, quantum correlations captured with both approaches are completely coincident. Moreover, some distinct features of the quantum correlations and their underlying physics are exposed via analyses and discussions.