In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?...In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?100 ℃ with strain rates of 10 -3 10 -1 s -1 . Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n , has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ=K 1d rex -0 56 . The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lg d rex =-0 281?1gZ +3 908?1.展开更多
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t...In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.展开更多
To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional ...To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.展开更多
An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination ...An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51675435,51875470,52074228)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2021-TZ-01,2021-TS-07)。
文摘In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?100 ℃ with strain rates of 10 -3 10 -1 s -1 . Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n , has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ=K 1d rex -0 56 . The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lg d rex =-0 281?1gZ +3 908?1.
基金Projects 2006CB202200 supported by the Special Funds for the Major State Basic Research ProjectIRT0656 by the Innovative Team Development Project of the State Educational Ministry of China
文摘In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.
基金supported by the National Climate Center of China under Grants 2211011816501。
文摘To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.
基金supported by the National Basic Research Program of China (973 Program, Grant Nos. 2013CB430105 and 2014CB441403)the National Natural Science Foundation of China (Grant No. 41205099)+1 种基金Guizhou Province Scientific Research Joint Project (Grant No. G[2013]4001)the Special Scientific Research Project of Meteorological Public Welfare Profession of China (Grant No. GYHY201006031)
文摘An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.