Lean premixed combustion,which allows for reducing the production of thermal NOx,is prone to combustion instabilities.There is an extensive research to develop a reduced physical model,which allows-without time-consum...Lean premixed combustion,which allows for reducing the production of thermal NOx,is prone to combustion instabilities.There is an extensive research to develop a reduced physical model,which allows-without time-consuming measurements-to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum,combustion chamber).For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out.In these investigations the flow in the combustion chamber is isotherm,non-reacting and excited with a sinusoidal mass flow rate.Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated.In this paper the results of additional investigations of the single resonator are presented.The flow in the combustion chamber was investigated without excitation at the inlet.It was detected,that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent.The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber.This result sheds light on a very important source of self-excited combustion instabilities.Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.展开更多
The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-partic...The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-particle mixture can be written. The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distribution. The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600 MW utility boiler. Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity. Local measurements of velocities using LDV probe, gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables. Again we have observed a good agreement between the computations and the measurements in terms of jet penetration, temperature distribution, oxygen concentration and ash content.展开更多
文摘Lean premixed combustion,which allows for reducing the production of thermal NOx,is prone to combustion instabilities.There is an extensive research to develop a reduced physical model,which allows-without time-consuming measurements-to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum,combustion chamber).For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out.In these investigations the flow in the combustion chamber is isotherm,non-reacting and excited with a sinusoidal mass flow rate.Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated.In this paper the results of additional investigations of the single resonator are presented.The flow in the combustion chamber was investigated without excitation at the inlet.It was detected,that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent.The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber.This result sheds light on a very important source of self-excited combustion instabilities.Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.
文摘The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-particle mixture can be written. The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distribution. The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600 MW utility boiler. Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity. Local measurements of velocities using LDV probe, gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables. Again we have observed a good agreement between the computations and the measurements in terms of jet penetration, temperature distribution, oxygen concentration and ash content.