[Objective] The aim was to explore technology on processing feces in duck farms at scale, providing guiding method for effective control of environmental issues in breeding farms. [Methed] Bio-safety disposal and reco...[Objective] The aim was to explore technology on processing feces in duck farms at scale, providing guiding method for effective control of environmental issues in breeding farms. [Methed] Bio-safety disposal and recovering processing of excrements in a duck farm were researched based on technology of configuration, detection, digestion, EM and poultry breeding. [Result] The integrated application technology is quite simple and the cost is not high. During breeding period, excellent organic fertilizers and high-protein forages could be obtained without any antibiotics. Furthermore, secondary wastes and pollution would not occur. In addition, ammonia was lower in excrements processed with earthworm and air pollution was reduced; the produced humus provided organic fertilizers and improved barren soils. [Conclusion] The research provides references of multi-technology integration for related industries.展开更多
Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and it...Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and its adverse health effects, studies on anthropogenic contributions to the increasing levels of GHG, particularly from livestock waste management practices, have not been adequately explored, especially in less developed countries. This study determined waste management practices and outdoor levels of CH4 and CO2 at three selected livestock farms (A-C) in Ibadan, Oyo State, Nigeria. Each study farm consisted of poultry, cattle and pig units. A 30-point observational checklist documented adequacy of solid waste management practices. Ambient concentrations of CH4 and CO2 at farm buildings and at waste disposal sites were monitored every other day, twice each day of monitoring (morning and evening hours), for eight weeks during months of September-November in 2013. Average scores for the waste management practices for Farms A-C were 29.6%, 33.3% and 18.5%, respectively. Morning and evening CH4 concentrations in parts per million (ppm) at main buildings of Farms A-C were 2,538 ± 773 and 1,916 ± 662, 2,325 ± 773 and 1,180 ± 483, and 2,389 ± 687 and 1,854 ± 571, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C main buildings were 350 ± 130 and 330 ± 110, 470 ± 100 and 440 ± 100, and 430 ± 80 and 400 ± 70, respectively. Morning and evening CH4 concentrations (ppm) at Farms A-C waste disposal sites were 2,452 ± 495 and 1,614 ± 372, 1,527 ± 390 and 1,736 ± 269, and 2,345 ± 615 and 1,690 ± 387, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C waste disposal sites were 330 ± 90, 370 ± 60 and 350 ± 30, respectively. Waste management practices were inadequate; solid waste management practices like infrequent evacuation of slurry waste and open burning of waste may have contributed to the production of CH4 and CO2. This study suggested proper handling, removal and disposal of farm waste which can reduce production of GHGs like CH4 and CO2.展开更多
基金Supported by Program from Education Department of Sichuan Province(112B115)~~
文摘[Objective] The aim was to explore technology on processing feces in duck farms at scale, providing guiding method for effective control of environmental issues in breeding farms. [Methed] Bio-safety disposal and recovering processing of excrements in a duck farm were researched based on technology of configuration, detection, digestion, EM and poultry breeding. [Result] The integrated application technology is quite simple and the cost is not high. During breeding period, excellent organic fertilizers and high-protein forages could be obtained without any antibiotics. Furthermore, secondary wastes and pollution would not occur. In addition, ammonia was lower in excrements processed with earthworm and air pollution was reduced; the produced humus provided organic fertilizers and improved barren soils. [Conclusion] The research provides references of multi-technology integration for related industries.
文摘Livestock farm waste contributes substantially to annual worldwide emissions of GHG (Greenhouse Gases), including CH4 (Methane) and CO2 (Carbon Dioxide). However, despite evidence of global climate change and its adverse health effects, studies on anthropogenic contributions to the increasing levels of GHG, particularly from livestock waste management practices, have not been adequately explored, especially in less developed countries. This study determined waste management practices and outdoor levels of CH4 and CO2 at three selected livestock farms (A-C) in Ibadan, Oyo State, Nigeria. Each study farm consisted of poultry, cattle and pig units. A 30-point observational checklist documented adequacy of solid waste management practices. Ambient concentrations of CH4 and CO2 at farm buildings and at waste disposal sites were monitored every other day, twice each day of monitoring (morning and evening hours), for eight weeks during months of September-November in 2013. Average scores for the waste management practices for Farms A-C were 29.6%, 33.3% and 18.5%, respectively. Morning and evening CH4 concentrations in parts per million (ppm) at main buildings of Farms A-C were 2,538 ± 773 and 1,916 ± 662, 2,325 ± 773 and 1,180 ± 483, and 2,389 ± 687 and 1,854 ± 571, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C main buildings were 350 ± 130 and 330 ± 110, 470 ± 100 and 440 ± 100, and 430 ± 80 and 400 ± 70, respectively. Morning and evening CH4 concentrations (ppm) at Farms A-C waste disposal sites were 2,452 ± 495 and 1,614 ± 372, 1,527 ± 390 and 1,736 ± 269, and 2,345 ± 615 and 1,690 ± 387, respectively. Morning and evening CO2 concentrations (ppm) at Farms A-C waste disposal sites were 330 ± 90, 370 ± 60 and 350 ± 30, respectively. Waste management practices were inadequate; solid waste management practices like infrequent evacuation of slurry waste and open burning of waste may have contributed to the production of CH4 and CO2. This study suggested proper handling, removal and disposal of farm waste which can reduce production of GHGs like CH4 and CO2.