The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigat...The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigated. It was found that the influence of the former can neglect, but that of the latter is so prominent that the data fluctuate bitterly and linearity of the curve of the reduced viscosity vs. concentration (hsp/c^c) becomes too bad to obey the Huggins equation down to the extremely dilute region, despite the error of the flow times Dt 0.2s, which is permitted by the conventional method of viscosity measurement. Through strict mathematical analyses, it was found that the error (E) of the reduced viscosity is in proportion and inverse proportion to Dt and concentration c, respectively. So the less the concentration, the more the error is. Consequently, a lowest concentration limit cL corresponding to given experimental error may exist and it will be meaningless for further operation below cL because of the great fluctuation of the data. Therefore, it needs to seriously reconsider the application of the conventional method of Ubbelohde viscosity measurement in the extremely dilute polymer solution under traditional conditions because of the great influence of the experimental error.展开更多
文摘The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely dilute concentration region are investigated. It was found that the influence of the former can neglect, but that of the latter is so prominent that the data fluctuate bitterly and linearity of the curve of the reduced viscosity vs. concentration (hsp/c^c) becomes too bad to obey the Huggins equation down to the extremely dilute region, despite the error of the flow times Dt 0.2s, which is permitted by the conventional method of viscosity measurement. Through strict mathematical analyses, it was found that the error (E) of the reduced viscosity is in proportion and inverse proportion to Dt and concentration c, respectively. So the less the concentration, the more the error is. Consequently, a lowest concentration limit cL corresponding to given experimental error may exist and it will be meaningless for further operation below cL because of the great fluctuation of the data. Therefore, it needs to seriously reconsider the application of the conventional method of Ubbelohde viscosity measurement in the extremely dilute polymer solution under traditional conditions because of the great influence of the experimental error.