A new method of contrast enhancement is proposed in the paper using multiscale edge representation of images, and is applied to the field of CT medical image processing. Comparing to the traditional Window technique, ...A new method of contrast enhancement is proposed in the paper using multiscale edge representation of images, and is applied to the field of CT medical image processing. Comparing to the traditional Window technique, our method is adaptive and meets the demand of radiology clinics more better. The clinical experiment results show the practicality and the potential applied value of our method in the field of CT medical images contrast enhancement.展开更多
Computer simulation is a good guide and reference for development and research on petroleum refining processes. Traditionally, pseudo-components are used in the simulation, in which their physical properties are estim...Computer simulation is a good guide and reference for development and research on petroleum refining processes. Traditionally, pseudo-components are used in the simulation, in which their physical properties are estimated by empirical relations and cannot be associated with actual chemical reactions, as no molecular structure is available for pseudo-components. This limitation can be overcome if real components are used. In this paper, a real component based method is proposed for the simulation of a diesel hydrotreating process by using the software of Unisim Design. This process includes reaction units and distillation units. The chemical reaction network is established by analyzing the feedstock. The feedstock is characterized by real components, which are obtained based on true boiling point curve. Simulation results are consistent with actual data.展开更多
This paper focuses on how to extract physically meaningful information from climate data,with emphases placed on adaptive and local analysis. It is argued that many traditional statistical analysis methods with rigoro...This paper focuses on how to extract physically meaningful information from climate data,with emphases placed on adaptive and local analysis. It is argued that many traditional statistical analysis methods with rigorous mathematical footing may not be efficient in extracting essential physical information from climate data;rather,adaptive and local analysis methods that agree well with fundamental physical principles are more capable of capturing key information of climate data. To illustrate the improved power of adaptive and local analysis of climate data,we also introduce briefly the empirical mode decomposition and its later developments.展开更多
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t...Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.展开更多
基金Supported by National Natural Science Foundation of China,under Grant No.6 0 2 710 15
文摘A new method of contrast enhancement is proposed in the paper using multiscale edge representation of images, and is applied to the field of CT medical image processing. Comparing to the traditional Window technique, our method is adaptive and meets the demand of radiology clinics more better. The clinical experiment results show the practicality and the potential applied value of our method in the field of CT medical images contrast enhancement.
文摘Computer simulation is a good guide and reference for development and research on petroleum refining processes. Traditionally, pseudo-components are used in the simulation, in which their physical properties are estimated by empirical relations and cannot be associated with actual chemical reactions, as no molecular structure is available for pseudo-components. This limitation can be overcome if real components are used. In this paper, a real component based method is proposed for the simulation of a diesel hydrotreating process by using the software of Unisim Design. This process includes reaction units and distillation units. The chemical reaction network is established by analyzing the feedstock. The feedstock is characterized by real components, which are obtained based on true boiling point curve. Simulation results are consistent with actual data.
基金US National Science Foundation Grant(No.AGS-1139479)
文摘This paper focuses on how to extract physically meaningful information from climate data,with emphases placed on adaptive and local analysis. It is argued that many traditional statistical analysis methods with rigorous mathematical footing may not be efficient in extracting essential physical information from climate data;rather,adaptive and local analysis methods that agree well with fundamental physical principles are more capable of capturing key information of climate data. To illustrate the improved power of adaptive and local analysis of climate data,we also introduce briefly the empirical mode decomposition and its later developments.
基金supported by the National Key Research and Development Plan of China (Grant No. 2016YFC0600901)the National Natural Science Foundation of China (Grant Nos. 51374214, 51134005 & 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.