A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substitutin...A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.展开更多
Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxid...Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.展开更多
Black shale is widely distributed in southern and western China.The swelling and breakdown characteristics of black shale are important physicomechanical properties in engineering activities.Aqueous solutions with dif...Black shale is widely distributed in southern and western China.The swelling and breakdown characteristics of black shale are important physicomechanical properties in engineering activities.Aqueous solutions with different compositions exert various influences on the swelling characteristic of black shale because of the complexity of its composition.Soils derived from black shale are most commonly developed on black shales with bedded horizons that generally have cutting and weathering profiles.This paper reports an axial free swelling study for soils derived from black shales and developed in the Lower Cambrian black shales in Chengkou County,Chongqing Municipality,Southwest China.To discuss the swelling characteristics of black shale under the influence of cations,an axial free swelling test was conducted on black shale samples while considering the initial water content,weathering stage of black shale,and different cationic solutions with various concentrations.Results showed that the swelling deformation curve of black shale could be divided into three phases:acceleration,deceleration,and stability.The axial swelling ratio eventually decreased with increasing water content,and the axial free swelling rate changed with the free expansion model of the exponential relationship.Under a constant initial water content,the axial swelling rate increased with the intensity of black shale weathering in the same immersion solution.When different types of immersion solutions were used,the cationic price was high and the axial swelling rate increased with rising cation valence.The changes in the swelling ratio were significant at a valence of one or two.The results of this study provide further understanding of the engineering geological characteristics of black shale and the geological hazards caused by the swelling characteristics of black shale.展开更多
From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, ...From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary ACDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. Herein we present two representative paradigms of early universe physics. The first is the reputed new matter (or matter-ekpyrotic) bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase. In the setting of this paradigm, we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations. The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation. We present a class of possible model constructions and review the implications on the current CMB experiments. Lastly a review of significant achievements of these paradigms beyond the inflationary ACDM model is made, which is expected to shed new light on the future direction of observational cosmology.展开更多
We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the infla...We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the inflaton field equation[J.High Energy Phys.09(2014) 020].We build excited coherent states over the non-de Sitter modes and despite the Jack of interactions in the Lagrangian,we find a non-zero one-point function.It is shown that the primordial non-Gaussianity resulting from excited-de Sitter modes depend both of time and background space-time.It is very tiny of order(≤10^-24),at the Planck initial fixed time that confirmed by resent observations for single field inflation but it grows in the present epoch.Moreover,our results at the leading order are similar to what obtained with general initial states and in the dS limit leads to standard results[J.Cosmol.Astropart.Phys.1202(2012) 005].We will show that the non-dS modes and its resulting spectrum are more usable for far past time limit.展开更多
文摘A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.
基金Supported by the National Natural Science Foundation of China(No.20076042,No.20206029)and the Scientific Research Foundation of the State Education Ministry for the Returned Overseas Chinese Scholars(No.2002-247).
文摘Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.
基金sponsored by the Natural Science Foundation of China (Grant Nos.41172261 and 41472256)supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant Nos.13ZA0173 and 15ZA0121)
文摘Black shale is widely distributed in southern and western China.The swelling and breakdown characteristics of black shale are important physicomechanical properties in engineering activities.Aqueous solutions with different compositions exert various influences on the swelling characteristic of black shale because of the complexity of its composition.Soils derived from black shale are most commonly developed on black shales with bedded horizons that generally have cutting and weathering profiles.This paper reports an axial free swelling study for soils derived from black shales and developed in the Lower Cambrian black shales in Chengkou County,Chongqing Municipality,Southwest China.To discuss the swelling characteristics of black shale under the influence of cations,an axial free swelling test was conducted on black shale samples while considering the initial water content,weathering stage of black shale,and different cationic solutions with various concentrations.Results showed that the swelling deformation curve of black shale could be divided into three phases:acceleration,deceleration,and stability.The axial swelling ratio eventually decreased with increasing water content,and the axial free swelling rate changed with the free expansion model of the exponential relationship.Under a constant initial water content,the axial swelling rate increased with the intensity of black shale weathering in the same immersion solution.When different types of immersion solutions were used,the cationic price was high and the axial swelling rate increased with rising cation valence.The changes in the swelling ratio were significant at a valence of one or two.The results of this study provide further understanding of the engineering geological characteristics of black shale and the geological hazards caused by the swelling characteristics of black shale.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Department of Physics at McGill
文摘From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary ACDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. Herein we present two representative paradigms of early universe physics. The first is the reputed new matter (or matter-ekpyrotic) bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase. In the setting of this paradigm, we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations. The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation. We present a class of possible model constructions and review the implications on the current CMB experiments. Lastly a review of significant achievements of these paradigms beyond the inflationary ACDM model is made, which is expected to shed new light on the future direction of observational cosmology.
基金supported by the Islamic Azad University,Ayatollah Amoli Branch, Amol,Mazandaran,Iran
文摘We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the inflaton field equation[J.High Energy Phys.09(2014) 020].We build excited coherent states over the non-de Sitter modes and despite the Jack of interactions in the Lagrangian,we find a non-zero one-point function.It is shown that the primordial non-Gaussianity resulting from excited-de Sitter modes depend both of time and background space-time.It is very tiny of order(≤10^-24),at the Planck initial fixed time that confirmed by resent observations for single field inflation but it grows in the present epoch.Moreover,our results at the leading order are similar to what obtained with general initial states and in the dS limit leads to standard results[J.Cosmol.Astropart.Phys.1202(2012) 005].We will show that the non-dS modes and its resulting spectrum are more usable for far past time limit.