期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
陶瓷球床在堆内辐照物理计算
1
作者 葛艳艳 骆贝贝 +1 位作者 丁丽 王玉林 《科技创新导报》 2017年第20期95-97,99,共4页
本文的主要内容是在中国先进研究堆(CARR)堆内固进行态氚增殖剂陶瓷球床辐照实验的物理计算。本文采用Monte Carlo粒子输运模拟程序MCNP5对陶瓷球床进行堆内建模计算得到不同功率下球床的中子注量率、发热功率和产氚速率。通过更改氚增... 本文的主要内容是在中国先进研究堆(CARR)堆内固进行态氚增殖剂陶瓷球床辐照实验的物理计算。本文采用Monte Carlo粒子输运模拟程序MCNP5对陶瓷球床进行堆内建模计算得到不同功率下球床的中子注量率、发热功率和产氚速率。通过更改氚增殖剂球床组件的结构尺寸或堆功率来满足实验的要求,得到满足实验要求的球床结构,在堆内辐照陶瓷球床组件进行物理计算和分析,从而为热工计算分析提供数据,为整体装置在堆内辐照实验提供安全分析。最终得到球床的中子注量率为5.63x10^(12)n/cm^2s,球床的发热功率为491.9W。 展开更多
关键词 陶瓷球床组件 堆内辐照 物理计算和分析
下载PDF
Pressure gradient errors in a covariant method of implementing theσ-coordinate:idealized experiments and geometric analysis 被引量:1
2
作者 LI Jin-Xi LI Yi-Yuan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第4期270-276,共7页
A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and t... A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain. 展开更多
关键词 Pressure gradient forceerrors covariant scalarequations of the o-coordinate steep terrain computational andphysical space geometricanalysis non-orthogonala-coordinate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部