This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system a...This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.展开更多
文摘This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.