Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on th...Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on this principle, finally took protein evolution for an example to analyze. The model provided some reference for biological complexity research.展开更多
The natural distribution, diffusion, and geographical origin of the genus Homidia Brmer, 1906 (Collembola: Entomobryidae) are investigated based on the geographical distribution of the genus Homidia. Of the 57 spec...The natural distribution, diffusion, and geographical origin of the genus Homidia Brmer, 1906 (Collembola: Entomobryidae) are investigated based on the geographical distribution of the genus Homidia. Of the 57 species of the genus Homidia known worldwide, most are distributed in Asia (54 species) with China (32 species including 23 native species) having the most species in this genus. The only region outside Asia with a significant fauna is United States including Georgia, Illinois, Louisiana and Hawaii (6 species). The authors propose a theory for the origin and diffusion of members of this genus.展开更多
The morphology and ultrastructure of Bullacta exarata spermatozoa observed by light and transmission electron microscopy are presented in this paper. The spermatozoon is composed of head with a simple acrosomal comple...The morphology and ultrastructure of Bullacta exarata spermatozoa observed by light and transmission electron microscopy are presented in this paper. The spermatozoon is composed of head with a simple acrosomal complex and an elongated nucleus, and tail with a midpiece, principal piece and an end piece. The midpiece consists of a mitochondrial ring, and the principal piece is composed of axoneme and lateral fin. The structure of 5. exarata spermatozoa differs significantly from that of other gastropods, especially in the lateral fin and the principal piece, which was described scarcely before. A comparison is made between B. exarata and other gastropods, and its significance on reproductive evolution and physio-ecological adaptation is preliminarily discussed.展开更多
Inter Simple Sequence Repeats (ISSR) markers were used to assess genetic diversity within and among populations of dwarf mountain pine (Pinus rnugo Turra) growing in the Tatra National Park (UNESCO Biosphere Rese...Inter Simple Sequence Repeats (ISSR) markers were used to assess genetic diversity within and among populations of dwarf mountain pine (Pinus rnugo Turra) growing in the Tatra National Park (UNESCO Biosphere Reserve) in Southern Poland (Central Europe). The analyzed population belongs to two different geobotanical sub-districts: the Western and High Tatras. The level of genetic diversity assessed in this study for P. mugo is generally comparable to that reported for the other pine species in the Pinaceae family assessed by ISSR markers, especially with respect to Nei's genetic diversity and the percentage of polymorphic bands. Bayesian analysis clustered the analyzed populations into two groups, corresponding to their geobotanical locations in the Tatras. Significant divergence between the two genetical clusters was supported by the results of Analysis of Molecular Variance (AMOVA). According to the Mantel test, there was no correlation between the genetic distance and the geographical distance. The present study confirms the existence of two genetically distinct dusters of P. mugo populations in the Tatra Mountains. The observed high population-genetic differentiation of P.mugo in the Tatras could be attributed to several genetic, environmental and historical factors occurring in this mountain area.展开更多
Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, tel...Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interest- ing new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories [Current Zoology 56 (6): 714-727, 2010].展开更多
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate eq...A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shar...In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.展开更多
With the cultural myth that science can only determine the way the world "is" (facts), while humanities, social sciences, lawyers, philosophers, and theologians must determine the way the world "ought to be" (v...With the cultural myth that science can only determine the way the world "is" (facts), while humanities, social sciences, lawyers, philosophers, and theologians must determine the way the world "ought to be" (values), those in position of global-, national-, and local-political power make major decisions of the use (or non-use) of scientific knowledge and technology. As a result, the human being has created a non-scientifically based cultural environment that is affecting his ability to survive. In effect, cultural evolution is occurring more rapidly than biological evolution that can adapt to the changes brought about in the physical and psycho-social environments. In a pluralistic cultural world, where each society has generated a different view of human nature and different ethical values, the use, misuse, or non-use of scientific and technological advances are derived from these unscientific views of human nature. Since all life depends on limiting interacting environmental and ecological factors, it is imperative that scientific information be used to govern how to minimize irreversible effects on life-sustaining ecological factors, but also scientific information bearing on understanding human nature ought to be integrated into a "global bioethics". While ethical values cannot be directly derived from scientific factors, it is also true that human values or our "ought" cannot be maintained in ignorance or defiance of the facts or the "is".展开更多
Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carbonif...Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.展开更多
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation an...Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.展开更多
基金Supported by National Basic Research Program of China (973 Program) (Grant No. 2007CB714101)~~
文摘Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on this principle, finally took protein evolution for an example to analyze. The model provided some reference for biological complexity research.
基金supported by the Shandong Provincial Natural Science Foundation,China (ZR2010CM018)
文摘The natural distribution, diffusion, and geographical origin of the genus Homidia Brmer, 1906 (Collembola: Entomobryidae) are investigated based on the geographical distribution of the genus Homidia. Of the 57 species of the genus Homidia known worldwide, most are distributed in Asia (54 species) with China (32 species including 23 native species) having the most species in this genus. The only region outside Asia with a significant fauna is United States including Georgia, Illinois, Louisiana and Hawaii (6 species). The authors propose a theory for the origin and diffusion of members of this genus.
文摘The morphology and ultrastructure of Bullacta exarata spermatozoa observed by light and transmission electron microscopy are presented in this paper. The spermatozoon is composed of head with a simple acrosomal complex and an elongated nucleus, and tail with a midpiece, principal piece and an end piece. The midpiece consists of a mitochondrial ring, and the principal piece is composed of axoneme and lateral fin. The structure of 5. exarata spermatozoa differs significantly from that of other gastropods, especially in the lateral fin and the principal piece, which was described scarcely before. A comparison is made between B. exarata and other gastropods, and its significance on reproductive evolution and physio-ecological adaptation is preliminarily discussed.
基金supported by Research Grant No. NN304060339 from the Ministry of Science and Higher Education of Poland
文摘Inter Simple Sequence Repeats (ISSR) markers were used to assess genetic diversity within and among populations of dwarf mountain pine (Pinus rnugo Turra) growing in the Tatra National Park (UNESCO Biosphere Reserve) in Southern Poland (Central Europe). The analyzed population belongs to two different geobotanical sub-districts: the Western and High Tatras. The level of genetic diversity assessed in this study for P. mugo is generally comparable to that reported for the other pine species in the Pinaceae family assessed by ISSR markers, especially with respect to Nei's genetic diversity and the percentage of polymorphic bands. Bayesian analysis clustered the analyzed populations into two groups, corresponding to their geobotanical locations in the Tatras. Significant divergence between the two genetical clusters was supported by the results of Analysis of Molecular Variance (AMOVA). According to the Mantel test, there was no correlation between the genetic distance and the geographical distance. The present study confirms the existence of two genetically distinct dusters of P. mugo populations in the Tatra Mountains. The observed high population-genetic differentiation of P.mugo in the Tatras could be attributed to several genetic, environmental and historical factors occurring in this mountain area.
文摘Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interest- ing new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories [Current Zoology 56 (6): 714-727, 2010].
文摘A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
基金Funded by the Fundamental Research Funds for the Central Universities (XDJXS11161157)
文摘In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.
文摘With the cultural myth that science can only determine the way the world "is" (facts), while humanities, social sciences, lawyers, philosophers, and theologians must determine the way the world "ought to be" (values), those in position of global-, national-, and local-political power make major decisions of the use (or non-use) of scientific knowledge and technology. As a result, the human being has created a non-scientifically based cultural environment that is affecting his ability to survive. In effect, cultural evolution is occurring more rapidly than biological evolution that can adapt to the changes brought about in the physical and psycho-social environments. In a pluralistic cultural world, where each society has generated a different view of human nature and different ethical values, the use, misuse, or non-use of scientific and technological advances are derived from these unscientific views of human nature. Since all life depends on limiting interacting environmental and ecological factors, it is imperative that scientific information be used to govern how to minimize irreversible effects on life-sustaining ecological factors, but also scientific information bearing on understanding human nature ought to be integrated into a "global bioethics". While ethical values cannot be directly derived from scientific factors, it is also true that human values or our "ought" cannot be maintained in ignorance or defiance of the facts or the "is".
基金supported by Project of China Geological Survey(Grant No.1212011120153-3)
文摘Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.
基金supported by the National Key R&D Program of China (Grant Nos. 2016YFC0600204 & 2016YFC0600408)the National Natural Science Foundation of China (Grant Nos. 41421062 & 41372005)
文摘Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.