The species diversity at the regeneration stage, inflenced by different water levels, is important for community composition in the later growing season.Regeneration diversity of Carex lasiocarpa community under diffe...The species diversity at the regeneration stage, inflenced by different water levels, is important for community composition in the later growing season.Regeneration diversity of Carex lasiocarpa community under different water levels was studied at two stages, recruitment and adult, in the Sanjiang Plain, Heilongjiang Province, China.The results showed that, at the two growing stages, important value of C.lasiocarpa population and species richness of the community decreased with the increasing water level, while the Simpson and Shannon-Wiener diversity indexes and Pielou evenness index increased.Under different water levels, community diversities were higher at the recruitment stage, while population important values of C.lasiocarpa were higher at the adult stage.Indexes in vegetation evaluation must be chosen prudentially for successful restoration and effective management of wetlands, and especially for wetland restoration, the optimal time should be selected according to the restoration objectives and costs.展开更多
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths f...The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.展开更多
In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples ...In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples from primates and birds where appropriate. In closely related fishes from the monophyletic Ectodinii clade of Lake Tanganyika, both forces influence cichlid brains and behavior. Considering social influences first, visual acuity differs with respect to social organization (monogamy versus polygyny). Both the telencephalon and amygdalar homologue, area Dm, are larger in monogamous species. Monogamous species are found to have more vasotocin-immunoreactive cells in the preoptic area of the brain. Habitat complexity also influences brain and behavior in these fishes. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are enhanced in cichlids living in more complex environments. However habitat complexity and social forces affect cichlid brains differently. Taken together, our field data and plasticity data suggest that some of the species-specific neural effects of habitat complexity could be the consequence of the corresponding social correlates. Environmental forces, however, exert a broader effect on brain structures than social ones do, suggesting allometric expansion of the brain structures in concert with brain size and/or co-evolntion of these structures [Current Zoology 56 (1): 144-156, 2010].展开更多
The study aimed to assess the response of ep- and hemiedaphic Collembola communities(activity, richness, community structure) to a disturbance, the subsequent management regime and to the season(summer, winter) in a H...The study aimed to assess the response of ep- and hemiedaphic Collembola communities(activity, richness, community structure) to a disturbance, the subsequent management regime and to the season(summer, winter) in a High Tatra Mountains spruce forest destroyed by a windstorm.Fire and clear-cut resulted in an initial increase in the activity of Collembola inhabiting open areas,opportunistic or generalist species, while forest specialists diminished in numbers or disappeared.Our results indicated that treatment with nonextracted fallen trees(NEX) provided a better chance for forest species to survive compared with their survival in open habitats of extracted(EXT) and wildfire(FIR) treatments. Great species' potential of NEX treatment was indicated by Chao2 estimator and activity/species rarefaction curves. Communities of NEX treatment were more similar to the reference(REF) treatment, documented by ordination and cluster analyses. Thus, leaving fallen timber after a windthrow to natural process of succession is suitable for survival of forest species and maintenance of diversity in forests restoration than timber extraction.Community structure in wildfire(FIR) stands was the most dissimilar to the other treatments. Most of the species trapped in this treatment belonged to hemiedaphic life forms, while the activity of larger epedaphic species diminished. In contrast, the highest number of trapped Collembola in EXT treatment was connected with the larger-bodied epigeic species with fast dispersal ability. The trapping period affected both the number of individuals and species richness;Collembola activity and species diversity in the individual treatments were lower in winter compared with the summer period. Several species increased activity during the winter period, namely Folsomia penicula, Friesea mirabilis, F. truncata, Hypogastrura socialis and Protaphorura aurantiaca.展开更多
Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in...Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in the community (residence time), and the interaction between these two variables. We tested these effects using data on the effects of American bullfrog Lithobates catesbeianus invasion on native frog communities in 65 permanent lentic waters on islands in the Zhoushan Archipel- ago, China. We examined variation in native frog abundance and species richness in relation to features of the American bullfrog invasion, habitat disturbance, characteristics of the water body and fish communities and the presence of red swamp crayfish. Bullfrog invaded sites had lower native frog density and species richness, higher submerged vegetation cover and greater fre- quency of repairs to the water body than did non-invaded sites. The minimum adequate general linear mixed models showed that both native frog density and species richness were negatively related to post-metamorphosis bullfrog density, and that native frog species richness was also positively related to the vegetation cover. There was no effect on either native frog density or species richness of residence time or its interaction with bullfrog density, or of the abundance of bullfrog tadpoles. The results suggested that post-metamorphosis bullfrogs had impacts on native frog communities in the islands, and that the extents of these impacts are proportional to post-metamorphosis bullfrog density展开更多
Human activities are strongly modifying the global nitrogen (N) cycle through increasing input, N species diversity, and pool size of industrial reactive N (Nr). However, the fluxes, fates and environmental consequenc...Human activities are strongly modifying the global nitrogen (N) cycle through increasing input, N species diversity, and pool size of industrial reactive N (Nr). However, the fluxes, fates and environmental consequences of industrial Nr (excluding synthesized N fertilizer) remain poorly understood and quantified. We report here that industrial Nr flux has increased 13.4-fold over the past 30 years in China, reaching 3.7Tg N (1 Tg=10 12g) in 2008, accounting for over 50% of China's food Nr flux. Socioeconomic development (per capita GDP, urbanization and household size) significantly drives the growth of industrial Nr fluxes. This leads to "hotspots" of industrial Nr, mainly in relatively developed Eastern China. Industrial Nr loss rate during production is only 5%, much lower than that of cropland (50%) and livestock (80%). However, industrial Nr loss is point source pollution, and Nr release in concentrated doses produces serious risk in small regions. The contribution of structural N to total industrial Nr with a lifespan longer than one year (e.g., synthetic fiber, plastic) increased from 20% in 1980 to 70% in 2008. There was about 2.6 Tg N structural industrial Nr accumulated in human settlements in 2008, which could be one ex- planation of an unknown Nr sink of anthropogenic Nr input (mainly Haber-Bosch N fixation). Legacy effects caused by structural N accumulation have long-term consequences for environmental and human health, although structural N delays Nr release and reduces short-term Nr pollution. Industrial Nr use generates new features of modern global N biogeochemistry, such as increasing Nr species diversity, reducing Nr turnover rate. Future dynamics simulation of the earth system should involve industrial Nr. Explicit consideration and accounting of the fluxes and environmental consequences of industrial Nr would provide decision-makers a novel view of regional sustainable development.展开更多
Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the en...Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the energetic costs of maintain- ing and developing larger brains. Here we ask if interspecific differences in cooperative behaviour (i.e. cleaning behaviour) are related to brain weight variations in four close-related species of Labrid fish: two are obligatory cleanerfish throughout their en- tire life (Labroides dimidiatus and L. bicolor), one facultative cleaner fish Labropsis australis and one last species that never en- gage in cleaning Labrichthys unilineatus. We first search for the link between the rate of species' cooperation and its relative brain weight, and finally, if the degree of social complexity and cooperation are reflected in the weight of its major brain sub- structures. Overall, no differences were found in relative brain weight (in relation to body weight) across species. Fine-scale dif- ferences were solely demonstrated for the facultative cleaner L. australis, at the brainstem level. Furthermore, data visual exami- nation indicates that the average cerebellum and brainstem weights appear to be larger for L. dimidiatus. Because variation was solely found at specific brain areas (such as cerebellum and brainstem) and not for the whole brain weight values, it suggests that species social-ecological and cognitive demands may be directly contributing to a selective investment in relevant brain areas. This study provides first preliminary evidence that links potential differences in cognitive ability in cooperative behaviour to how these may mediate the evolution of brain structural development in non-mammal vertebrate groups .展开更多
As a new type of heritage, Agricultural Heritage Systems(AHS), represented by Globally Important Agricultural Heritage Systems(GIAHS) designated by Food and Agriculture Organization of the United Nations(FAO)and Natio...As a new type of heritage, Agricultural Heritage Systems(AHS), represented by Globally Important Agricultural Heritage Systems(GIAHS) designated by Food and Agriculture Organization of the United Nations(FAO)and Nationally Important Agricultural Heritage Systems(NIAHS) designated by some countries’ Ministry of Agriculture, are typical Social-Ecological Systems(SES), which usually are rich in biodiversity, traditional knowledge,resource utilization technology and outstanding cultural landscapes. Cultural Keystone Species(CKS) are defined as the culturally salient species that shape the cultural identity of a people in a major way. CKS can be used as a prominent tool for the synergistic conservation of SES biology and culture, and to promote the overall enhancement of system functions. This paper summarizes a review of the definition of the CKS and its application in SES conservation. According to the characteristics and protection needs of AHS, this paper defined the CKS in AHS as:“Composites of biological resources and cultural practices, which have a significant impact on the stability of local society and culture systems, contribute to the achievement of AHS’ conservation goals.” Based on this definition,we analyzed the significance of the identification of CKS in AHS. First of all, CKS help to quickly identify the key elements of AHS. Secondly, CKS can promote community participation in the conservation and development of AHS. In addition, the identification of CKS has a significant role in food and livelihood security, biodiversity conservation, traditional knowledge and technology transmission, social organization maintenance, and cultural landscape maintenance in AHS, which helps to achieve the conservation goals of GIAHS and/or NIAHS.展开更多
基金Under the auspices of the National Basic Research Program of China (No. 2009CB421103)Northeast Revitalization Program,Chinese Academy of Sciences (No. DBZX-2-024)
文摘The species diversity at the regeneration stage, inflenced by different water levels, is important for community composition in the later growing season.Regeneration diversity of Carex lasiocarpa community under different water levels was studied at two stages, recruitment and adult, in the Sanjiang Plain, Heilongjiang Province, China.The results showed that, at the two growing stages, important value of C.lasiocarpa population and species richness of the community decreased with the increasing water level, while the Simpson and Shannon-Wiener diversity indexes and Pielou evenness index increased.Under different water levels, community diversities were higher at the recruitment stage, while population important values of C.lasiocarpa were higher at the adult stage.Indexes in vegetation evaluation must be chosen prudentially for successful restoration and effective management of wetlands, and especially for wetland restoration, the optimal time should be selected according to the restoration objectives and costs.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-417)
文摘The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.
基金supported by NSF grants IBN-02180005 to Caroly Shumway (CAS) and IBN-021795 to Hans Hofmann (HAH)a German-American Research Networking Program grant to CAS and HAH+1 种基金the New England Aquarium to CASthe Bauer Center for Genomics Research to HAH
文摘In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples from primates and birds where appropriate. In closely related fishes from the monophyletic Ectodinii clade of Lake Tanganyika, both forces influence cichlid brains and behavior. Considering social influences first, visual acuity differs with respect to social organization (monogamy versus polygyny). Both the telencephalon and amygdalar homologue, area Dm, are larger in monogamous species. Monogamous species are found to have more vasotocin-immunoreactive cells in the preoptic area of the brain. Habitat complexity also influences brain and behavior in these fishes. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are enhanced in cichlids living in more complex environments. However habitat complexity and social forces affect cichlid brains differently. Taken together, our field data and plasticity data suggest that some of the species-specific neural effects of habitat complexity could be the consequence of the corresponding social correlates. Environmental forces, however, exert a broader effect on brain structures than social ones do, suggesting allometric expansion of the brain structures in concert with brain size and/or co-evolntion of these structures [Current Zoology 56 (1): 144-156, 2010].
基金supported from the Slovak Scientific Grant Agency VEGA project no. 1/0282/ 11VVGS grant (Faculty of Science, P.J. Safárik University, Kosice) no. 9/2011
文摘The study aimed to assess the response of ep- and hemiedaphic Collembola communities(activity, richness, community structure) to a disturbance, the subsequent management regime and to the season(summer, winter) in a High Tatra Mountains spruce forest destroyed by a windstorm.Fire and clear-cut resulted in an initial increase in the activity of Collembola inhabiting open areas,opportunistic or generalist species, while forest specialists diminished in numbers or disappeared.Our results indicated that treatment with nonextracted fallen trees(NEX) provided a better chance for forest species to survive compared with their survival in open habitats of extracted(EXT) and wildfire(FIR) treatments. Great species' potential of NEX treatment was indicated by Chao2 estimator and activity/species rarefaction curves. Communities of NEX treatment were more similar to the reference(REF) treatment, documented by ordination and cluster analyses. Thus, leaving fallen timber after a windthrow to natural process of succession is suitable for survival of forest species and maintenance of diversity in forests restoration than timber extraction.Community structure in wildfire(FIR) stands was the most dissimilar to the other treatments. Most of the species trapped in this treatment belonged to hemiedaphic life forms, while the activity of larger epedaphic species diminished. In contrast, the highest number of trapped Collembola in EXT treatment was connected with the larger-bodied epigeic species with fast dispersal ability. The trapping period affected both the number of individuals and species richness;Collembola activity and species diversity in the individual treatments were lower in winter compared with the summer period. Several species increased activity during the winter period, namely Folsomia penicula, Friesea mirabilis, F. truncata, Hypogastrura socialis and Protaphorura aurantiaca.
基金Acknowledgements We thank Feng XU and Yanping WANG for helping a part of field works and Richard Duncan for comments on the manuscript. This work was supported by a grant from National Science foundation (No. 30870312) and by a grant from the "973" program (No. 2007CB411600).
文摘Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in the community (residence time), and the interaction between these two variables. We tested these effects using data on the effects of American bullfrog Lithobates catesbeianus invasion on native frog communities in 65 permanent lentic waters on islands in the Zhoushan Archipel- ago, China. We examined variation in native frog abundance and species richness in relation to features of the American bullfrog invasion, habitat disturbance, characteristics of the water body and fish communities and the presence of red swamp crayfish. Bullfrog invaded sites had lower native frog density and species richness, higher submerged vegetation cover and greater fre- quency of repairs to the water body than did non-invaded sites. The minimum adequate general linear mixed models showed that both native frog density and species richness were negatively related to post-metamorphosis bullfrog density, and that native frog species richness was also positively related to the vegetation cover. There was no effect on either native frog density or species richness of residence time or its interaction with bullfrog density, or of the abundance of bullfrog tadpoles. The results suggested that post-metamorphosis bullfrogs had impacts on native frog communities in the islands, and that the extents of these impacts are proportional to post-metamorphosis bullfrog density
基金supported by the National Natural Science Foundation of China (Grant Nos. 41201502 and 31170305)China Postdoctoral Science Special Foundation (Grant No. 2012T50508)China Postdoctoral Science Foundation (Grant No. 2011M501010)
文摘Human activities are strongly modifying the global nitrogen (N) cycle through increasing input, N species diversity, and pool size of industrial reactive N (Nr). However, the fluxes, fates and environmental consequences of industrial Nr (excluding synthesized N fertilizer) remain poorly understood and quantified. We report here that industrial Nr flux has increased 13.4-fold over the past 30 years in China, reaching 3.7Tg N (1 Tg=10 12g) in 2008, accounting for over 50% of China's food Nr flux. Socioeconomic development (per capita GDP, urbanization and household size) significantly drives the growth of industrial Nr fluxes. This leads to "hotspots" of industrial Nr, mainly in relatively developed Eastern China. Industrial Nr loss rate during production is only 5%, much lower than that of cropland (50%) and livestock (80%). However, industrial Nr loss is point source pollution, and Nr release in concentrated doses produces serious risk in small regions. The contribution of structural N to total industrial Nr with a lifespan longer than one year (e.g., synthetic fiber, plastic) increased from 20% in 1980 to 70% in 2008. There was about 2.6 Tg N structural industrial Nr accumulated in human settlements in 2008, which could be one ex- planation of an unknown Nr sink of anthropogenic Nr input (mainly Haber-Bosch N fixation). Legacy effects caused by structural N accumulation have long-term consequences for environmental and human health, although structural N delays Nr release and reduces short-term Nr pollution. Industrial Nr use generates new features of modern global N biogeochemistry, such as increasing Nr species diversity, reducing Nr turnover rate. Future dynamics simulation of the earth system should involve industrial Nr. Explicit consideration and accounting of the fluxes and environmental consequences of industrial Nr would provide decision-makers a novel view of regional sustainable development.
文摘Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the energetic costs of maintain- ing and developing larger brains. Here we ask if interspecific differences in cooperative behaviour (i.e. cleaning behaviour) are related to brain weight variations in four close-related species of Labrid fish: two are obligatory cleanerfish throughout their en- tire life (Labroides dimidiatus and L. bicolor), one facultative cleaner fish Labropsis australis and one last species that never en- gage in cleaning Labrichthys unilineatus. We first search for the link between the rate of species' cooperation and its relative brain weight, and finally, if the degree of social complexity and cooperation are reflected in the weight of its major brain sub- structures. Overall, no differences were found in relative brain weight (in relation to body weight) across species. Fine-scale dif- ferences were solely demonstrated for the facultative cleaner L. australis, at the brainstem level. Furthermore, data visual exami- nation indicates that the average cerebellum and brainstem weights appear to be larger for L. dimidiatus. Because variation was solely found at specific brain areas (such as cerebellum and brainstem) and not for the whole brain weight values, it suggests that species social-ecological and cognitive demands may be directly contributing to a selective investment in relevant brain areas. This study provides first preliminary evidence that links potential differences in cognitive ability in cooperative behaviour to how these may mediate the evolution of brain structural development in non-mammal vertebrate groups .
基金The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23100203)。
文摘As a new type of heritage, Agricultural Heritage Systems(AHS), represented by Globally Important Agricultural Heritage Systems(GIAHS) designated by Food and Agriculture Organization of the United Nations(FAO)and Nationally Important Agricultural Heritage Systems(NIAHS) designated by some countries’ Ministry of Agriculture, are typical Social-Ecological Systems(SES), which usually are rich in biodiversity, traditional knowledge,resource utilization technology and outstanding cultural landscapes. Cultural Keystone Species(CKS) are defined as the culturally salient species that shape the cultural identity of a people in a major way. CKS can be used as a prominent tool for the synergistic conservation of SES biology and culture, and to promote the overall enhancement of system functions. This paper summarizes a review of the definition of the CKS and its application in SES conservation. According to the characteristics and protection needs of AHS, this paper defined the CKS in AHS as:“Composites of biological resources and cultural practices, which have a significant impact on the stability of local society and culture systems, contribute to the achievement of AHS’ conservation goals.” Based on this definition,we analyzed the significance of the identification of CKS in AHS. First of all, CKS help to quickly identify the key elements of AHS. Secondly, CKS can promote community participation in the conservation and development of AHS. In addition, the identification of CKS has a significant role in food and livelihood security, biodiversity conservation, traditional knowledge and technology transmission, social organization maintenance, and cultural landscape maintenance in AHS, which helps to achieve the conservation goals of GIAHS and/or NIAHS.