[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the...Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the most important applications for the Internet of Things. In practice, it is hard to get enough real-world samples to generate the classifi- ers for some special audio events (e.g., car-crash- ing in the smart traffic system). In this paper, we introduce a TrAdaBoost-based method to solve the above problem. By using the proposed approach, we can train a strong classifier by using only a tiny amount of real-world data and a large number of more easily collected samples (e.g., collected from TV programs), even when the real-world data is not sufficient to train a model alone. We deploy this ap- proach in a smart traffic system to evaluate its per- formance, and the experiment evaluations demonstrate that our method can achieve satisfying results.展开更多
Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic infe...Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.展开更多
A great number of sensor technologies are applied in the Intemet of Things (loT) currently and more are emerging, which rmkes the loT a heterogeneous network. This paper discusses the convergence and integration pro...A great number of sensor technologies are applied in the Intemet of Things (loT) currently and more are emerging, which rmkes the loT a heterogeneous network. This paper discusses the convergence and integration problem in IoT. A Service-Oriented Middleware for Heterogeneous Environment (SOMHE) in IoT is proposed. The purpose of the middleware is to shield the differ- ence between protocols in the sensor layers such as Radio Frequency Identification (RFID) and Zig-Bee by defining the data conversion and mapping model. A Web service interface is supplied by this middleware, thus the complexity of high level appli-cation development can be reduced greatly. The feasibility and reliability of this middleware is veri-fied by a demonstration systelTL展开更多
Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the I...Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data.展开更多
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金supported by the National Natural Science Foundation of China(No.60821001)the National Basic Research Program of China(No.2007CB311203)
文摘Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the most important applications for the Internet of Things. In practice, it is hard to get enough real-world samples to generate the classifi- ers for some special audio events (e.g., car-crash- ing in the smart traffic system). In this paper, we introduce a TrAdaBoost-based method to solve the above problem. By using the proposed approach, we can train a strong classifier by using only a tiny amount of real-world data and a large number of more easily collected samples (e.g., collected from TV programs), even when the real-world data is not sufficient to train a model alone. We deploy this ap- proach in a smart traffic system to evaluate its per- formance, and the experiment evaluations demonstrate that our method can achieve satisfying results.
基金Supported by National Natural Science Foundation of China(No.61601039)financially supported by the State Key Research Development Program of China(Grant No.2016YFC0801407)+3 种基金financially supported by the Natural Science Foundation of Beijing Information Science & Technology University(No.1625008)financially supported by the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(NO.ICDD201607)Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(NO.SKLNST-2016-2-08)financially supported by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Grant No.CIT&TCD201504056)
文摘Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.
基金This paper was supported by the National Natural Science Foundation of China under Crant No. NSFC-61170176 the Na-tional Great Science Specific Project under Grants No. 2010ZX03005-001-03, No2011ZX03005-004-02 the Beijing Munici-pal Con-rnission of Education Build Together Project and Minis-try of Education Infrastructure Construction Project (2-5-2).
文摘A great number of sensor technologies are applied in the Intemet of Things (loT) currently and more are emerging, which rmkes the loT a heterogeneous network. This paper discusses the convergence and integration problem in IoT. A Service-Oriented Middleware for Heterogeneous Environment (SOMHE) in IoT is proposed. The purpose of the middleware is to shield the differ- ence between protocols in the sensor layers such as Radio Frequency Identification (RFID) and Zig-Bee by defining the data conversion and mapping model. A Web service interface is supplied by this middleware, thus the complexity of high level appli-cation development can be reduced greatly. The feasibility and reliability of this middleware is veri-fied by a demonstration systelTL
基金the Project"The Basic Research on Internet of Things Architecture"supported by National Key Basic Research Program of China(No.2011CB302704)supported by National Natural Science Foundation of China(No.60802034)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20070013026)Beijing Nova Program(No.2008B50)"New generation broadband wireless mobile communication network"Key Projects for Science and Technology Development(No.2011ZX03002-002-01)
文摘Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data.