The efficient and selective electrocatalytic hydrogenation(ECH)of furfural is considered a green strategy for achieving biomass-derived high-value chemicals.Regulating an aqueous electrolytic environment,a green hydro...The efficient and selective electrocatalytic hydrogenation(ECH)of furfural is considered a green strategy for achieving biomass-derived high-value chemicals.Regulating an aqueous electrolytic environment,a green hydrogen energy source of water,is significant for improving the selectivity of products and reducing energy consumption.In this study,we systematically investigated the mechanism of pH dependence of product selectivity in the ECH of furfural on Cu electrodes.Under acidic conditions,the oxygen atom dissociated directly from hydrogenated furfural-derived alkoxyl intermediates,followed by stepwise hydrogenation until H_(2)O formation via a thermodynamically favorable proton-coupled electron transfer process,thereby inducing a high proportion of the hydrogenolysis product(2-methylfuran).However,under partial alkaline conditions,furfural could be directly hydrogenated to furfuryl alcohol(selectivity~98%)due to the high-energy barrier of the deoxidation process via a surface hydride(Had)transfer.Our results highlight the vital role of the electrolytic environment in furfural selective conversion and broaden our fundamental understanding of hydrodeoxygenation reactions in ECH.展开更多
We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We inves...We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.展开更多
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependen...The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence(IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.展开更多
In the mean field approximation of nonlinear relativistic a-ω-p model, we have studied the influence of density-dependent coupling constants between nucleons and mesons on the equation of state (EOS) of infinite sy...In the mean field approximation of nonlinear relativistic a-ω-p model, we have studied the influence of density-dependent coupling constants between nucleons and mesons on the equation of state (EOS) of infinite symmetric nuclear matter in different conditions. We find that the EOS of nuclear matter will become stiffer as e, d in the self- interaction of σ meson increase when the coeffcients except aω in Гω, in which the opposite occurs, are fixed. On the other hand, greater values of aσ, bσ, cσ, aω, dω and smaller values of dσ, bω, cω will lead to stiffer EOS ifc and d are fixed. Besides, greater values of Гω lead to stiffer EOS in high density region for the EOS with same incompressibility coefficient at saturation density.展开更多
文摘The efficient and selective electrocatalytic hydrogenation(ECH)of furfural is considered a green strategy for achieving biomass-derived high-value chemicals.Regulating an aqueous electrolytic environment,a green hydrogen energy source of water,is significant for improving the selectivity of products and reducing energy consumption.In this study,we systematically investigated the mechanism of pH dependence of product selectivity in the ECH of furfural on Cu electrodes.Under acidic conditions,the oxygen atom dissociated directly from hydrogenated furfural-derived alkoxyl intermediates,followed by stepwise hydrogenation until H_(2)O formation via a thermodynamically favorable proton-coupled electron transfer process,thereby inducing a high proportion of the hydrogenolysis product(2-methylfuran).However,under partial alkaline conditions,furfural could be directly hydrogenated to furfuryl alcohol(selectivity~98%)due to the high-energy barrier of the deoxidation process via a surface hydride(Had)transfer.Our results highlight the vital role of the electrolytic environment in furfural selective conversion and broaden our fundamental understanding of hydrodeoxygenation reactions in ECH.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11041003 and 60802087the Natural Science Foundation of Jiangsu Province under Grant No.BK2004119
文摘We present three families of exact matter-wave soliton solutions for an effective one-dimension twocomponent Bose-Einstein condensates(BECs) with tunable interactions,harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons,bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential,periodically modulated harmonic trap potential,and kinklike modulated harmonic trap potential.Through the Feshbach resonance,these dynamics can be realized in experiments by suitable control of time-dependent trap parameters,atomic interactions,and interaction with thermal cloud.
基金supported by the National Natural Science Foundation of China(Grant Nos.11475071,and 11547308)the Seeds Funding of Jilin University
文摘The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence(IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
基金Supported by the National Natural Science Foundation of China under Grant No.11275073
文摘In the mean field approximation of nonlinear relativistic a-ω-p model, we have studied the influence of density-dependent coupling constants between nucleons and mesons on the equation of state (EOS) of infinite symmetric nuclear matter in different conditions. We find that the EOS of nuclear matter will become stiffer as e, d in the self- interaction of σ meson increase when the coeffcients except aω in Гω, in which the opposite occurs, are fixed. On the other hand, greater values of aσ, bσ, cσ, aω, dω and smaller values of dσ, bω, cω will lead to stiffer EOS ifc and d are fixed. Besides, greater values of Гω lead to stiffer EOS in high density region for the EOS with same incompressibility coefficient at saturation density.