A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named ...A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.展开更多
基金Supported by the National Natural Science Foundation of China(No.295256O9 and 29736180).
文摘A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.