Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction r...Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.展开更多
Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using t...Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using the FLUENT 6.0 software. The simulation results are compared with the experimental data. The effects of the steam to biomass ratio (S/B), the equivalence ratio (ER), and the size of biomass particles on the hydrogen yield were studied. Meanwhile, the distributions of hydrogen inside the gasifier at different conditions are also described.展开更多
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river chan...This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.展开更多
基金sponsored by National Natural Science Foundation of China(Grant No.40904035)
文摘Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.
文摘Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using the FLUENT 6.0 software. The simulation results are compared with the experimental data. The effects of the steam to biomass ratio (S/B), the equivalence ratio (ER), and the size of biomass particles on the hydrogen yield were studied. Meanwhile, the distributions of hydrogen inside the gasifier at different conditions are also described.
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
基金This paper was supported by the Chinese Academy of Sciences (KZCX2-406) and National Natural Science Foundation of China (NSFC39970123) and Changbai Mountain Open Research Station.
文摘This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.