This work consists of estimating the energy achieved from all land and water-based vegetations. This real potential is determined by identifying 10 biomass samples taken from vegetable resources which are favored by t...This work consists of estimating the energy achieved from all land and water-based vegetations. This real potential is determined by identifying 10 biomass samples taken from vegetable resources which are favored by their aptitude of adaptation to the conditions of Iran. The net energy values of the 10 biomass samples change in the range of 13.65-18.00 MJ/kg using bomb calorimeter. By means of least squarere regression method all correlations were found. The results of 10 different biomass materials have been used to develop a linear equation correlation.展开更多
The chemical industry is nowadays predominantly using fossil raw materials,but the alternative use of bio-based resources is investigated to account for the foreseeable scarcity of fossil feedstocks.A main challenge o...The chemical industry is nowadays predominantly using fossil raw materials,but the alternative use of bio-based resources is investigated to account for the foreseeable scarcity of fossil feedstocks.A main challenge of using biobased feedstocks is the complexity of the impurity profile.For an economic production of bio-based chemicals,the use of intensified processes is inevitable and approaches are needed for the various process intensification techniques to identify their applicability to be used for the production of bio-based components.In the presented study,an approach is shown for the reactive distillation(RD) technology to identify the most critical bio-based impurities and their impact on the reactive distillation process.The investigated case-study is the production of n-butyl acrylate from acrylic acid and n-butanol.Among all initially identified impurities,the key impurities,having the biggest impact on the product purity in the reactive distillation process,are found.These impurities are then studied in more detail and an operating window depending on the impurity concentration is identified for the reactive distillation column.Furthermore,an integrated design of upstream and downstream processes is facilitated,as the presented results can be used in the development of the fermentation processes for the production of the bio-based reactants by decreasing the concentration of the critical impurities.展开更多
Solar and biomass are both renewable energy resources.Using biomass as fuel is becoming more and more attractive after governments increase the tariff for the electricity from the renewable sources.However the costs o...Solar and biomass are both renewable energy resources.Using biomass as fuel is becoming more and more attractive after governments increase the tariff for the electricity from the renewable sources.However the costs of power from a biomass power generation plant depend greatly on the availability and quality of the biomass resource.The commercialization of solar alone thermal power generation is hindered by its high initial investment and low thermal efficiency.In this paper,a concept of integrating solar into a biomass power generation system is put forward.In the system the oil heated by a parabolic trough solar field is used to replace the extraction steam to preheat the feed water(entering a biomass boiler) and the previous extraction steam thus saved can continue to do work in the lower stages of turbine.The performance of the hybrid system with different replacements is analyzed and compared through two typical solar aided biomass generating units.The results show that the integration not only reduces the consumption of biomass fuel(at the same generation capacity) but is also proved to be an efficient way to convert solar thermal energy into power.The results also show that with the same solar aperture area,the higher the grade of the replaced extraction steam,the better the thermal performance and economy.展开更多
文摘This work consists of estimating the energy achieved from all land and water-based vegetations. This real potential is determined by identifying 10 biomass samples taken from vegetable resources which are favored by their aptitude of adaptation to the conditions of Iran. The net energy values of the 10 biomass samples change in the range of 13.65-18.00 MJ/kg using bomb calorimeter. By means of least squarere regression method all correlations were found. The results of 10 different biomass materials have been used to develop a linear equation correlation.
基金funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no.241718,Eurobioref
文摘The chemical industry is nowadays predominantly using fossil raw materials,but the alternative use of bio-based resources is investigated to account for the foreseeable scarcity of fossil feedstocks.A main challenge of using biobased feedstocks is the complexity of the impurity profile.For an economic production of bio-based chemicals,the use of intensified processes is inevitable and approaches are needed for the various process intensification techniques to identify their applicability to be used for the production of bio-based components.In the presented study,an approach is shown for the reactive distillation(RD) technology to identify the most critical bio-based impurities and their impact on the reactive distillation process.The investigated case-study is the production of n-butyl acrylate from acrylic acid and n-butanol.Among all initially identified impurities,the key impurities,having the biggest impact on the product purity in the reactive distillation process,are found.These impurities are then studied in more detail and an operating window depending on the impurity concentration is identified for the reactive distillation column.Furthermore,an integrated design of upstream and downstream processes is facilitated,as the presented results can be used in the development of the fermentation processes for the production of the bio-based reactants by decreasing the concentration of the critical impurities.
基金supported by the National Natural Science Foundation of China (Grant Nos 51025624, 51006033)the National Basic Research Program of China ("973" Program) (Grant No 2009CB219801)Foundation of North China Electric Power University
文摘Solar and biomass are both renewable energy resources.Using biomass as fuel is becoming more and more attractive after governments increase the tariff for the electricity from the renewable sources.However the costs of power from a biomass power generation plant depend greatly on the availability and quality of the biomass resource.The commercialization of solar alone thermal power generation is hindered by its high initial investment and low thermal efficiency.In this paper,a concept of integrating solar into a biomass power generation system is put forward.In the system the oil heated by a parabolic trough solar field is used to replace the extraction steam to preheat the feed water(entering a biomass boiler) and the previous extraction steam thus saved can continue to do work in the lower stages of turbine.The performance of the hybrid system with different replacements is analyzed and compared through two typical solar aided biomass generating units.The results show that the integration not only reduces the consumption of biomass fuel(at the same generation capacity) but is also proved to be an efficient way to convert solar thermal energy into power.The results also show that with the same solar aperture area,the higher the grade of the replaced extraction steam,the better the thermal performance and economy.