单相AC/AC模块化多电平(MMC)可以直接连接于25 k V的牵引供电网,无需笨重的50 Hz工频变压器,极大地减小了整个系统的体积以及成本。MMC的子模块(SM)电容电压平衡仍然是一个主要的技术问题,为此,提出了一种桥臂内和桥臂间电容电压平衡的...单相AC/AC模块化多电平(MMC)可以直接连接于25 k V的牵引供电网,无需笨重的50 Hz工频变压器,极大地减小了整个系统的体积以及成本。MMC的子模块(SM)电容电压平衡仍然是一个主要的技术问题,为此,提出了一种桥臂内和桥臂间电容电压平衡的方法。所提出的桥臂内电压平衡方法结合了传统载波移相脉宽调制(CPSPWM)和载波层叠脉宽调制(PDPWM)下电压平衡法的优点,桥臂内子模块电容电压平衡只需要2个比例调节器,极大地减小了控制系统的计算量;提出的桥臂间电压平衡通过连接上下桥臂的功率通道实现,避免了与输入/输出电压和电流的相互影响,解决了传统桥臂间电容电压平衡法中共模电流注入电网的问题。同时,建立了MMC的简化数学模型,该模型可以被看作背靠背的PWM变换器,并且清晰地揭示了功率流向。最后,仿真和实验证实了所提出电压平衡法的有效性以及数学模型的正确性。展开更多
文摘单相AC/AC模块化多电平(MMC)可以直接连接于25 k V的牵引供电网,无需笨重的50 Hz工频变压器,极大地减小了整个系统的体积以及成本。MMC的子模块(SM)电容电压平衡仍然是一个主要的技术问题,为此,提出了一种桥臂内和桥臂间电容电压平衡的方法。所提出的桥臂内电压平衡方法结合了传统载波移相脉宽调制(CPSPWM)和载波层叠脉宽调制(PDPWM)下电压平衡法的优点,桥臂内子模块电容电压平衡只需要2个比例调节器,极大地减小了控制系统的计算量;提出的桥臂间电压平衡通过连接上下桥臂的功率通道实现,避免了与输入/输出电压和电流的相互影响,解决了传统桥臂间电容电压平衡法中共模电流注入电网的问题。同时,建立了MMC的简化数学模型,该模型可以被看作背靠背的PWM变换器,并且清晰地揭示了功率流向。最后,仿真和实验证实了所提出电压平衡法的有效性以及数学模型的正确性。