We report the effect of UVoB irradiation (9.6 kJ m-2 day^-) on interspecific competition between two species of macroalgae, Ulva pertusa (U) and Grateloupiafilicina (G), in co-culture. Growth of U. pertusa and G...We report the effect of UVoB irradiation (9.6 kJ m-2 day^-) on interspecific competition between two species of macroalgae, Ulva pertusa (U) and Grateloupiafilicina (G), in co-culture. Growth of U. pertusa and G. filicina was inhibited by UV-B irradiation in mono-culture and specific growth rate (μ) declined as a result. Interspecific competition between U. pertusa and G filicina was closely related to the initial weights when co-cultured. When initial ratios of U. pertusa (U) to G filicina (G) were U:G=I.2:I and 1:1, U. pertusa was the dominant algae. When the initial U:G ratio was 1:1.2, G. filicina was competitively dominant in the earlier stage, but U. pertusa grew faster, superseding G. filicina in the later stage. At initial ration U:G = 1:1.4, G. filicina was predominant. Under UV-B irradiation, the competitive ability of G filicina was weakened and the interspecific competitive balance favored U. pertusa, which suggests that G. filicina was more sensitive to UV-B irradiation. We also probed the potential allelopathic effects between the two species, which led to mutual growth inhibition.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p...Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.展开更多
基金Supported by the National Natural Science Foundation of China(No.30270258)the Natural Science Foundation of Shandong Province(No.2007ZRB01903)
文摘We report the effect of UVoB irradiation (9.6 kJ m-2 day^-) on interspecific competition between two species of macroalgae, Ulva pertusa (U) and Grateloupiafilicina (G), in co-culture. Growth of U. pertusa and G. filicina was inhibited by UV-B irradiation in mono-culture and specific growth rate (μ) declined as a result. Interspecific competition between U. pertusa and G filicina was closely related to the initial weights when co-cultured. When initial ratios of U. pertusa (U) to G filicina (G) were U:G=I.2:I and 1:1, U. pertusa was the dominant algae. When the initial U:G ratio was 1:1.2, G. filicina was competitively dominant in the earlier stage, but U. pertusa grew faster, superseding G. filicina in the later stage. At initial ration U:G = 1:1.4, G. filicina was predominant. Under UV-B irradiation, the competitive ability of G filicina was weakened and the interspecific competitive balance favored U. pertusa, which suggests that G. filicina was more sensitive to UV-B irradiation. We also probed the potential allelopathic effects between the two species, which led to mutual growth inhibition.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金supported by the Tsinghua University Initiative Scientific Research Program
文摘Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.