期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Cascade RCNN的热轧带钢表面缺陷检测
被引量:
4
1
作者
陆尧
薛林
+1 位作者
王云森
王豪
《仪表技术与传感器》
CSCD
北大核心
2023年第8期101-106,126,共7页
在工业生产过程中,带钢表面产生的缺陷影响其质量和使用性能,需要对表面缺陷进行检测,为此提出了基于深度学习的缺陷检测模型Cascade RCNN。首先,对骨干网络进行改进,将标准卷积替换为可切换空洞卷积,在不增加参数量的情况下,增大输出...
在工业生产过程中,带钢表面产生的缺陷影响其质量和使用性能,需要对表面缺陷进行检测,为此提出了基于深度学习的缺陷检测模型Cascade RCNN。首先,对骨干网络进行改进,将标准卷积替换为可切换空洞卷积,在不增加参数量的情况下,增大输出单元的感受野。其次,改变特征金字塔FPN,结构不变的情况下添加了自上而下的连接方式,同时使用特征上采样算子CARAFE替换最邻近上采样,提高了上采样精度和定位精度。最后,将损失函数换为Focal Loss,解决目标检测过程中正负样本不平衡问题。结果显示:通过以上方法的改进,检测精度有大幅提升,平均均值精度提高了7.61%,达到77.82%,各类缺陷的检测精度都得到了提高;与其他检测模型对比,模型的检测能力得到了提高,采用的改进方法有一定的应用价值。
展开更多
关键词
深度学习
缺陷检测
Cascade
RCNN
热轧带钢
特征上采样算子
Focal
Loss
下载PDF
职称材料
题名
基于Cascade RCNN的热轧带钢表面缺陷检测
被引量:
4
1
作者
陆尧
薛林
王云森
王豪
机构
大连理工大学机械工程学院
出处
《仪表技术与传感器》
CSCD
北大核心
2023年第8期101-106,126,共7页
文摘
在工业生产过程中,带钢表面产生的缺陷影响其质量和使用性能,需要对表面缺陷进行检测,为此提出了基于深度学习的缺陷检测模型Cascade RCNN。首先,对骨干网络进行改进,将标准卷积替换为可切换空洞卷积,在不增加参数量的情况下,增大输出单元的感受野。其次,改变特征金字塔FPN,结构不变的情况下添加了自上而下的连接方式,同时使用特征上采样算子CARAFE替换最邻近上采样,提高了上采样精度和定位精度。最后,将损失函数换为Focal Loss,解决目标检测过程中正负样本不平衡问题。结果显示:通过以上方法的改进,检测精度有大幅提升,平均均值精度提高了7.61%,达到77.82%,各类缺陷的检测精度都得到了提高;与其他检测模型对比,模型的检测能力得到了提高,采用的改进方法有一定的应用价值。
关键词
深度学习
缺陷检测
Cascade
RCNN
热轧带钢
特征上采样算子
Focal
Loss
Keywords
deep learning
defect detection
Cascade RCNN
hot rolled steel strip
feature upsampling operator
Focal Loss
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Cascade RCNN的热轧带钢表面缺陷检测
陆尧
薛林
王云森
王豪
《仪表技术与传感器》
CSCD
北大核心
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部