We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new...We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new starting vector,such that the occurrence of stagnation be mitigated or the convergence be accelerated.The more appealing utilization of the new method is in conjunction with a harmonic Ritz vector as the starting vector,which is discussed in detail.Numerical experiments are carried out to demonstrate that the proposed procedure can effectively mitigate the occurrence of stagnation due to the presence of small eigenvalues in modulus.展开更多
Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding pr...Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular pre- conditioners can be competitive to and even more efficient than the PMHSS preconditioner when they are used to accelerate Krylov subspeme iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.展开更多
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
文摘We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new starting vector,such that the occurrence of stagnation be mitigated or the convergence be accelerated.The more appealing utilization of the new method is in conjunction with a harmonic Ritz vector as the starting vector,which is discussed in detail.Numerical experiments are carried out to demonstrate that the proposed procedure can effectively mitigate the occurrence of stagnation due to the presence of small eigenvalues in modulus.
基金supported by National Natural Science Foundation of China(Grant Nos.11021101 and 91118001)the Hundred Talent Project of Chinese Academy of Sciences and the National Basic Research Program(Grant No.2011CB309703)
文摘Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular pre- conditioners can be competitive to and even more efficient than the PMHSS preconditioner when they are used to accelerate Krylov subspeme iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.