This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to...This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.展开更多
Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscilla...Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.展开更多
文摘This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.
基金supported by the National Natural Science Foundation of China (Grant No. 50595412)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB219700)
文摘Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.