A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decompositi...A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.展开更多
The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur d...The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality.展开更多
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet...A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.展开更多
The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth ...The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.展开更多
By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-in...By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-intensity-dependent Jaynes terms of the supersymmetric generators. The concise.展开更多
Partial eigenvalue decomposition(PEVD) and partial singular value decomposition(PSVD) of large sparse matrices are of fundamental importance in a wide range of applications, including latent semantic indexing, spectra...Partial eigenvalue decomposition(PEVD) and partial singular value decomposition(PSVD) of large sparse matrices are of fundamental importance in a wide range of applications, including latent semantic indexing, spectral clustering, and kernel methods for machine learning. The more challenging problems are when a large number of eigenpairs or singular triplets need to be computed. We develop practical and efficient algorithms for these challenging problems. Our algorithms are based on a filter-accelerated block Davidson method.Two types of filters are utilized, one is Chebyshev polynomial filtering, the other is rational-function filtering by solving linear equations. The former utilizes the fastest growth of the Chebyshev polynomial among same degree polynomials; the latter employs the traditional idea of shift-invert, for which we address the important issue of automatic choice of shifts and propose a practical method for solving the shifted linear equations inside the block Davidson method. Our two filters can efficiently generate high-quality basis vectors to augment the projection subspace at each Davidson iteration step, which allows a restart scheme using an active projection subspace of small dimension. This makes our algorithms memory-economical, thus practical for large PEVD/PSVD calculations. We compare our algorithms with representative methods, including ARPACK, PROPACK, the randomized SVD method, and the limited memory SVD method. Extensive numerical tests on representative datasets demonstrate that, in general, our methods have similar or faster convergence speed in terms of CPU time, while requiring much lower memory comparing with other methods. The much lower memory requirement makes our methods more practical for large-scale PEVD/PSVD computations.展开更多
In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegat...In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.展开更多
基金Supported by the National Natural Science Foundation of China (60872073)~~
文摘A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.
基金The National Natural Science Foundation of China(No.60572072,60496311),the National High Technology Researchand Development Program of China (863Program ) ( No.2003AA123310),the International Cooperation Project on Beyond 3G Mobile of China (No.2005DFA10360).
文摘The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality.
基金Projects(60634020, 60904077, 60874069) supported by the National Natural Science Foundation of ChinaProject(JC200903180555A) supported by the Foundation Project of Shenzhen City Science and Technology Plan of China
文摘A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.
基金the Youth Fund of Zhoukou Normal University(ZKnuqn200606)
文摘The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.
基金Supported by Foundation of President of Chinese Academy of Science
文摘By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-intensity-dependent Jaynes terms of the supersymmetric generators. The concise.
基金supported by National Science Foundation of USA (Grant Nos. DMS1228271 and DMS-1522587)National Natural Science Foundation of China for Creative Research Groups (Grant No. 11321061)+1 种基金the National Basic Research Program of China (Grant No. 2011CB309703)the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences
文摘Partial eigenvalue decomposition(PEVD) and partial singular value decomposition(PSVD) of large sparse matrices are of fundamental importance in a wide range of applications, including latent semantic indexing, spectral clustering, and kernel methods for machine learning. The more challenging problems are when a large number of eigenpairs or singular triplets need to be computed. We develop practical and efficient algorithms for these challenging problems. Our algorithms are based on a filter-accelerated block Davidson method.Two types of filters are utilized, one is Chebyshev polynomial filtering, the other is rational-function filtering by solving linear equations. The former utilizes the fastest growth of the Chebyshev polynomial among same degree polynomials; the latter employs the traditional idea of shift-invert, for which we address the important issue of automatic choice of shifts and propose a practical method for solving the shifted linear equations inside the block Davidson method. Our two filters can efficiently generate high-quality basis vectors to augment the projection subspace at each Davidson iteration step, which allows a restart scheme using an active projection subspace of small dimension. This makes our algorithms memory-economical, thus practical for large PEVD/PSVD calculations. We compare our algorithms with representative methods, including ARPACK, PROPACK, the randomized SVD method, and the limited memory SVD method. Extensive numerical tests on representative datasets demonstrate that, in general, our methods have similar or faster convergence speed in terms of CPU time, while requiring much lower memory comparing with other methods. The much lower memory requirement makes our methods more practical for large-scale PEVD/PSVD computations.
文摘In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.