In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical imp...In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.展开更多
A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be c...A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.展开更多
基金Project(Y2007F48) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SDTS20080422) supported by the Specialized Development Foundation for Taishan Scholars of Shandong Province, China Project(SDVS20090525) supported by the Specialized Foundation for Domestic Visiting Scholars of Shandong Province,China
文摘In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41505024 & 41127901)
文摘A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.