Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recom...Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recommendation,these news articles read by a user is typically in the form of a time sequence.However,traditional news recommendation algorithms rarely consider the time sequence characteristic of user browsing behaviors.Therefore,the performance of traditional news recommendation algorithms is not good enough in predicting the next news article which a user will read.To solve this problem,this paper proposes a time-ordered collaborative filtering recommendation algorithm(TOCF),which takes the time sequence characteristic of user behaviors into account.Besides,a new method to compute the similarity among different users,named time-dependent similarity,is proposed.To demonstrate the efficiency of our solution,extensive experiments are conducted along with detailed performance analysis.展开更多
The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of determini...The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.展开更多
基金supported by the Natural Science Foundation of China(No.61170174, 61370205)Tianjin Training plan of University Innovation Team(No.TD12-5016)
文摘Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recommendation,these news articles read by a user is typically in the form of a time sequence.However,traditional news recommendation algorithms rarely consider the time sequence characteristic of user browsing behaviors.Therefore,the performance of traditional news recommendation algorithms is not good enough in predicting the next news article which a user will read.To solve this problem,this paper proposes a time-ordered collaborative filtering recommendation algorithm(TOCF),which takes the time sequence characteristic of user behaviors into account.Besides,a new method to compute the similarity among different users,named time-dependent similarity,is proposed.To demonstrate the efficiency of our solution,extensive experiments are conducted along with detailed performance analysis.
文摘The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.