期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Transformer的图文跨模态检索算法 被引量:5
1
作者 杨晓宇 李超 +2 位作者 陈舜尧 李浩亮 殷光强 《计算机科学》 CSCD 北大核心 2023年第4期141-148,共8页
随着互联网多媒体数据的不断增长,文本图像检索已成为研究热点。在图文检索中,通常使用相互注意力机制,通过将图像和文本特征进行交互,来实现较好的图文匹配结果。但是,这种方法不能获取单独的图像特征和文本特征,在大规模检索后期需要... 随着互联网多媒体数据的不断增长,文本图像检索已成为研究热点。在图文检索中,通常使用相互注意力机制,通过将图像和文本特征进行交互,来实现较好的图文匹配结果。但是,这种方法不能获取单独的图像特征和文本特征,在大规模检索后期需要对图像文本特征进行交互,消耗了大量的时间,无法做到快速检索匹配。然而基于Transformer的跨模态图像文本特征学习取得了良好的效果,受到了越来越多的关注。文中设计了一种新颖的基于Transformer的文本图像检索网络结构(HAS-Net),该结构主要有以下几点改进:1)设计了一种分层Transformer编码结构,以更好地利用底层的语法信息和高层的语义信息;2)改进了传统的全局特征聚合方式,利用自注意力机制设计了一种新的特征聚合方式;3)通过共享Transformer编码层,使图片特征和文本特征映射到公共的特征编码空间。在MS-COCO数据集和Flickr30k数据集上进行实验,结果表明跨模态检索性能均得到提升,在同类算法中处于领先地位,证明了所设计的网络结构的有效性。 展开更多
关键词 TRANSFORMER 跨模态检索 特征分层提取 特征聚合 特征共享
下载PDF
基于K-CNN和N-GRU的风电机组发电机状态预测 被引量:3
2
作者 柴同 袁逸萍 +1 位作者 马军岩 樊盼盼 《机械强度》 CAS CSCD 北大核心 2023年第5期1043-1049,共7页
为了检测风电机组发电机异常、减少由故障引起的停机事件发生,基于真实风电场的数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统记录的多维传感器参数,提出一种K-CNN(Convolutional Neural Network,卷积神经网... 为了检测风电机组发电机异常、减少由故障引起的停机事件发生,基于真实风电场的数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统记录的多维传感器参数,提出一种K-CNN(Convolutional Neural Network,卷积神经网络)和N-GRU(Gated Recurrent Unit,门控循环单元)相结合的深度学习框架,建立风电机组发电机状态预测模型。首先,用Pearson相关系数分析状态参数相关性;之后,通过权重系数加权得到一维融合参数;其次,针对传统特征提取过程中忽略浅层特征的问题,采用CNN分层提取一维融合参数的特征,并利用核主成分分析(Kernel Principal Component Analysis,KPCA)将不同层的特征提取结果降为一维;然后,针对传统GRU算法参数欠优化问题,利用神经网络架构搜索改进GRU算法,得到N-GRU模型,将降维后的特征提取结果输入N-GRU做预测并得到重构误差,通过设定告警阈值实现状态评估;最后,以新疆某风场中2 MW风电机组为例,验证了该模型的有效性与准确性。 展开更多
关键词 Pearson相关系数 CNN分层特征提取 核主成分分析 N-GRU模型 重构误差
下载PDF
Horror Video Recognition Based on Fuzzy Comprehensive Evolution 被引量:2
3
作者 SONG Wei YANG Pei +3 位作者 YANG Guosheng MA ChuanLian YU Jing LIMing 《China Communications》 SCIE CSCD 2014年第A02期86-94,共9页
Technique for horror video recognition is important for its application in web content filtering and surveillance, especially for preventing children from being threaten. In this paper, a novel horror video recognitio... Technique for horror video recognition is important for its application in web content filtering and surveillance, especially for preventing children from being threaten. In this paper, a novel horror video recognition algorithm based on fuzzy comprehensive evolution model is proposed. Three low-level video features are extracted as typical features, and they are video key-light, video colour energy and video rhythm. Analytic Hierarchy Process (AHP) is adopted to estimate the weights of extracted features in fuzzy evolution model. Horror evaluation (membership function) is on shot scale and it is constructed based on the knowledge that videos which share the same affective have similar low-level features. K-Means algorithm is implemented to help finding the most representative feature vectors. The experimental results demonstrate that the proposed approach has good performance in recognition precision, recall rate and F1 measure. 展开更多
关键词 horror video recognition videoaffective fuzzy comprehensive evolution K-Meanscluster
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部