A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved w...A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.展开更多
This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schema...This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schematic of the σ-coordinate in a curvilinear coordinate system is provided in this study. The characteristics of the basis vectors were broken down into their "local vector charac- teristics" and "spatial distribution characteristics", and the exact expressions of the covariant; in addition, the con- travariant basis vectors of the G-coordinate used to eluci- date their detailed characteristics were properly solved. Through rewriting the expression of the vertical coordi- nate of G, a mathematical expression of all the cr-coor- dinate surfaces was found, thereby quantifying the so- called terrain-following characteristics and lack of flexi- bility to adjust the slope variation of G-coordinate sur- faces for the classic definition of G. Finally, an analysis on the range value of the vertical coordinate demonstrated that the general value range of G could be obtained by eliminating the G-coordinate surfaces below the Earth's surface. All these quantitative descriptions of the charac- teristics of G-coordinate were the foundation for improv- ing the G-coordinate or creating a new one.展开更多
基金Supported by the National Key Technology R&D Program (No. 2006BAK08B07)
文摘A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.
基金supported by the National Natural Science Foundation of China under Grant Nos. 40821092,40633016,and 40875022
文摘This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schematic of the σ-coordinate in a curvilinear coordinate system is provided in this study. The characteristics of the basis vectors were broken down into their "local vector charac- teristics" and "spatial distribution characteristics", and the exact expressions of the covariant; in addition, the con- travariant basis vectors of the G-coordinate used to eluci- date their detailed characteristics were properly solved. Through rewriting the expression of the vertical coordi- nate of G, a mathematical expression of all the cr-coor- dinate surfaces was found, thereby quantifying the so- called terrain-following characteristics and lack of flexi- bility to adjust the slope variation of G-coordinate sur- faces for the classic definition of G. Finally, an analysis on the range value of the vertical coordinate demonstrated that the general value range of G could be obtained by eliminating the G-coordinate surfaces below the Earth's surface. All these quantitative descriptions of the charac- teristics of G-coordinate were the foundation for improv- ing the G-coordinate or creating a new one.