Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On th...Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On the basis of feature modeling,the system is able to reason feature relationships,produce feature digraph of a part,and decide the machining sequence of features.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. ...A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image a...With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image authentication technique to determine the copy move forgery that copied a part of an image and pasted it on the other region in the same image. First, the method divides the image into overlapping blocks. It uses LPQ (local phase quantization) to label each block. The column average value of labeled blocks constitutes the feature vector for the block. Similarity among the feature vectors gives a clue about the forgery. Local phase quantization has not been used to detect copy move forgery in the literature before. Experimental results show that, the method has higher accuracy ratios and lower false negative values under blurring operation at high levels compared to other methods. Our method can also detect multiple copy move forgery.展开更多
This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3...This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3D surface texture images based on minimum Euclidean distance between the test images and the training sets. The feasibility and effectiveness of our proposed approach can be validated by the experimental results.展开更多
In this paper, an error is firstly pointed out in the proof of the main theorems (Theorem 4 and Theorem 6) in [1]. Then the error is corrected and the right proof is given.
基金Research supported by NNSF of China(No. 10271048)the Science and Technology Commission of Shanghai Municipality (No.04JC14031)NSF of Shanghai(05ZR14046)
文摘Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On the basis of feature modeling,the system is able to reason feature relationships,produce feature digraph of a part,and decide the machining sequence of features.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
基金Project(60873010) supported by the National Natural Science Foundation of ChinaProjects(N090504005, N090604012, N090104001) supported by the Fundamental Research Funds for the Central UniversitiesProject(NCET-05-0288) supported by Program for New Century Excellent Talents in University
文摘A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
文摘With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image authentication technique to determine the copy move forgery that copied a part of an image and pasted it on the other region in the same image. First, the method divides the image into overlapping blocks. It uses LPQ (local phase quantization) to label each block. The column average value of labeled blocks constitutes the feature vector for the block. Similarity among the feature vectors gives a clue about the forgery. Local phase quantization has not been used to detect copy move forgery in the literature before. Experimental results show that, the method has higher accuracy ratios and lower false negative values under blurring operation at high levels compared to other methods. Our method can also detect multiple copy move forgery.
文摘This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3D surface texture images based on minimum Euclidean distance between the test images and the training sets. The feasibility and effectiveness of our proposed approach can be validated by the experimental results.
基金Supported by the Natural Scientific Research Foundation of Yunnan Province(2000A0001-1M)the Scientific Foundations of Education Commisison of Yunnan Province(9911126)
文摘In this paper, an error is firstly pointed out in the proof of the main theorems (Theorem 4 and Theorem 6) in [1]. Then the error is corrected and the right proof is given.