期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于统计聚类与无向图模型的医学图像分割 被引量:1
1
作者 夏平 王塽 +1 位作者 任强 雷帮军 《现代电子技术》 2022年第5期61-66,共6页
超声医学图像灰度集中、对比度较差,针对传统分割方法效果不理想的问题,提出统计聚类与马尔科夫随机场(MRF)无向图模型的医学图像分割算法。医学图像的统计结构反映了图像空间区域的聚类特征,选定其灰度统计特性的局部峰值对应的灰度值... 超声医学图像灰度集中、对比度较差,针对传统分割方法效果不理想的问题,提出统计聚类与马尔科夫随机场(MRF)无向图模型的医学图像分割算法。医学图像的统计结构反映了图像空间区域的聚类特征,选定其灰度统计特性的局部峰值对应的灰度值作为K均值算法的初始聚类中心能较好地定位各区域,应用基于统计信息的聚类算法对医学图像进行初始分割;在此基础上构建各区域的无向图模型,建模二阶邻域系统描述像素标记间联系,医学图像的整体特征场采用高斯混合模型表征,并采用高斯模型建模标记相同的灰度特征场;最后,求解其局部能量最小的标记场,实现医学图像分割。实验结果表明,相比于传统的K均值算法、迭代算法以及Otsu算法,文中算法分割的医学图像的边缘与细节的清晰度、精细度均有一定程度改善。 展开更多
关键词 医学图像分割 统计聚类 无向图 区域定位 标记 特征场建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部