基于高小山,J.Van der Hoeven等人2009年提出的微分-差分(DD)特征列方法理论,针对微分-差分系统的一些特性,在原有理论方法的基础上进行改进与补充,对升列,导元,约化等概念重新定义.提出了一则新算法(Seesaw),用来对多项式系统中的变量...基于高小山,J.Van der Hoeven等人2009年提出的微分-差分(DD)特征列方法理论,针对微分-差分系统的一些特性,在原有理论方法的基础上进行改进与补充,对升列,导元,约化等概念重新定义.提出了一则新算法(Seesaw),用来对多项式系统中的变量的类重新确定,目的是为在比较升列序的过程中重新对变量排序,在实际计算中可以降低系统求解的难度.另外对DD-伪余算法也进行了改进.展开更多
This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error...This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.展开更多
文摘基于高小山,J.Van der Hoeven等人2009年提出的微分-差分(DD)特征列方法理论,针对微分-差分系统的一些特性,在原有理论方法的基础上进行改进与补充,对升列,导元,约化等概念重新定义.提出了一则新算法(Seesaw),用来对多项式系统中的变量的类重新确定,目的是为在比较升列序的过程中重新对变量排序,在实际计算中可以降低系统求解的难度.另外对DD-伪余算法也进行了改进.
文摘This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.