期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
船舶多目标图像特征并行提取算法
1
作者 朱晓珺 张栋梁 《舰船科学技术》 北大核心 2018年第8X期142-144,共3页
一片海域中包含多个船舶目标,同时提取多个目标过程极其复杂。传统的船舶多目标图像特征并行提取算法提取出来图像特征清晰度很差。为解决此问题,研究了一种新的船舶多目标图像特征并行提取算法,介绍了船舶图像多目标特征提取架构图,重... 一片海域中包含多个船舶目标,同时提取多个目标过程极其复杂。传统的船舶多目标图像特征并行提取算法提取出来图像特征清晰度很差。为解决此问题,研究了一种新的船舶多目标图像特征并行提取算法,介绍了船舶图像多目标特征提取架构图,重点分析颜色特征提取过程、纹理特征提取过程和形状特征提取过程。特征并行提取流程共分为初始分析、目标特征识别、图像特征确认、描述显示4个步骤,通过计算目标船舶所在位置,分析灰度值,提取船舶特征。利用与传统算法的对比实验验证了该算法的可行性。实验结果表明,给出的算法提取的目标图像清晰度更高。 展开更多
关键词 船舶图像 多目标图像 图像特征 特征并行提取 提取算法
下载PDF
基于多维度特征并行提取模型的黄酒制品指标预测
2
作者 彭亮 周康 +3 位作者 沈汪洋 金伟平 赵青 李广斌 《武汉轻工大学学报》 CAS 2022年第6期29-36,共8页
随着粮食行业的逐渐发展,常见预测方法得到制品的原料指标含量不满足时代需要。提出多维度特征并行提取与神经网络全局优化结合的混合模型,通过0,1加权后完成不同数据处理方法并行组合。采用和声搜索算法分别与BP、RNN神经网络结合,分... 随着粮食行业的逐渐发展,常见预测方法得到制品的原料指标含量不满足时代需要。提出多维度特征并行提取与神经网络全局优化结合的混合模型,通过0,1加权后完成不同数据处理方法并行组合。采用和声搜索算法分别与BP、RNN神经网络结合,分组化处理和声记忆库避免陷入局部最优,实现网络类型及结构的优选并完成特征选择,通过HS算法代替传统优化器进一步优化网络权重,从整体性实现神经网络全局优化。实验表明,通过混合模型实现预测,在黄酒原料指标大米水分、蛋白质、粗淀粉、脂肪含量、直链淀粉等指标值上的预测值与真实值之间具有较小的误差值。模型决定系数提高8%至24%,均方误差缩小7%至21%。可为生产优质制品提供满足时代需要的原料优选参考。 展开更多
关键词 原料指标值预测 多维度特征并行提取 自适应
下载PDF
并行特征提取和渐进特征融合的计算机主板装配缺陷检测
3
作者 陈俊英 李朝阳 +1 位作者 黄汉涛 董戌泽 《光学精密工程》 EI CAS CSCD 北大核心 2024年第10期1622-1637,共16页
针对计算机主板装配缺陷检测中的元器件位置分布复杂、缺陷目标不显著及多尺度等问题,本文提出了一种并行特征提取和互交叉渐进特征融合的端到端的缺陷检测算法。首先,结合部分卷积和视觉Transformer提出了一种并行残差特征提取网络,利... 针对计算机主板装配缺陷检测中的元器件位置分布复杂、缺陷目标不显著及多尺度等问题,本文提出了一种并行特征提取和互交叉渐进特征融合的端到端的缺陷检测算法。首先,结合部分卷积和视觉Transformer提出了一种并行残差特征提取网络,利用部分卷积的低计算复杂度的优势提取局部特征,同时利用视觉Transformer的长距离建模能力扩大模型的感受野,增强网络的特征提取能力。其次,引入注意力机制和特征渐进融合机制,提出了一种多尺度注意力互交叉的渐进特征融合网络,增强检测模型的特征融合能力。在公开数据集上的实验结果表明,该算法的平均精度均值(mAP)达到了94.63%,相较于基线模型YOLOv5提升了4.62%,并优于其他几种先进模型,检测速度达到了25 FPS。实现了较好的检测精度与速度的平衡,为实际工业环境下计算机主板表面装配缺陷检测自动化和智能化的实现提供了一种快速、有效的方法。 展开更多
关键词 计算机主板装配缺陷检测 并行特征提取 渐进特征融合 视觉Transformer 部分卷积
下载PDF
基于并行附加特征提取网络的SSD地面小目标检测模型 被引量:16
4
作者 李宝奇 贺昱曜 +1 位作者 强伟 何灵蛟 《电子学报》 EI CAS CSCD 北大核心 2020年第1期84-91,共8页
针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthw... 针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthwise Separable Dilated Convolution,DSDC),并利用DSDC设计了一个包含三个独立子网络的并行附加特征提取网络(Parallel Additional Feature Extraction Network,PAFEN).PAFEN上路用两个DSDC提取尺寸为19*19和3*3的特征图;中路用一个DSDC提取尺寸为10*10的特征图;下路用两个DSDC提取尺寸为5*5和1*1的特征图.实验结果表明,在SSD框架内,PAFEN在mAP和检测时间等方面均优于OAFEN,适用于地面小目标的检测任务. 展开更多
关键词 目标检测 SSD 深度可分离卷积 空洞卷积 深度可分离空洞卷积 并行附加特征提取网络
下载PDF
嵌入注意力机制的并行多尺度点云上采样方法
5
作者 肖霄 柏正尧 +2 位作者 李泽锴 刘旭珩 杜佳锦 《计算机科学》 CSCD 北大核心 2024年第8期183-191,共9页
目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-... 目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。 展开更多
关键词 3D点云 深度学习 点云上采样 并行多尺度特征提取 注意力机制
下载PDF
融合Swin-Transformer网络模型的水体高光区域提取 被引量:2
6
作者 陈毅夫 何敬 +1 位作者 刘刚 毛佳琪 《遥感信息》 CSCD 北大核心 2023年第4期129-136,共8页
在强光的照射下,水体的镜面反射往往会对遥感影像产生很大影响,其主要表现就是在图像上产生大小不同、形状各异的亮斑。这些亮斑附近的地物信息基本上都被淹没,对后期的影像分析会造成不同程度的影响,因此对这些亮斑的检测识别就显得尤... 在强光的照射下,水体的镜面反射往往会对遥感影像产生很大影响,其主要表现就是在图像上产生大小不同、形状各异的亮斑。这些亮斑附近的地物信息基本上都被淹没,对后期的影像分析会造成不同程度的影响,因此对这些亮斑的检测识别就显得尤为重要。文章以DeeplabV3plus为主要网络,提出一种融合Swin-Transformer模块的网络模型。该模型将Swin-Transformer网络作为一个模块与卷积骨干网络并行提取特征。提取出的两类特征经上采样后进行特征融合,再经多次卷积等实现了水体亮斑的识别与分割。实验结果表明,该模型能够对不同类型、不同形状的水体亮斑进行识别分割,其平均交并比为93.44%。 展开更多
关键词 水体高光区域提取 Swin-Transformer DeeplabV3plus 特征并行提取 特征融合
下载PDF
面向三维重建的无人机影像并行处理技术 被引量:4
7
作者 庞巧遇 邓宝松 +1 位作者 桂健钧 鹿迎 《计算机工程与设计》 北大核心 2023年第2期526-534,共9页
为提升三维重建任务的执行速度,解决行业现实应用对时效性的需求,提出一种无人机影像并行处理与特征提取算法,基于CPU与GPU两种计算架构在三维重建的两个阶段并行加速处理。一是基于CPU的并行处理策略,针对多核处理器采用OpenMP多线程机... 为提升三维重建任务的执行速度,解决行业现实应用对时效性的需求,提出一种无人机影像并行处理与特征提取算法,基于CPU与GPU两种计算架构在三维重建的两个阶段并行加速处理。一是基于CPU的并行处理策略,针对多核处理器采用OpenMP多线程机制,对无人机影像进行并行加载,为后续处理提供高效数据源;二是基于GPU的并行处理策略,通过改进SIFTGPU算法在GPU上以并行方式对图像进行特征提取,为快速重建提供特征输入。真实数据的实验结果表明,与现有算法相比,在图像处理速度上提升了2倍,特征点数量提升了4倍的同时,提取速度提升了11倍。 展开更多
关键词 室外大场景 无人机影像 三维重建 并行图像处理 并行特征提取 并行编程技术 基于图形处理器的尺度不变特征变换
下载PDF
基于并行特征提取和改进BiGRU的网络安全态势评估 被引量:14
8
作者 杨宏宇 张梓锌 张良 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期842-848,共7页
针对目前网络安全态势评估方法在特征提取、高效性等方面存在的不足,该文提出了一种基于并行特征提取和改进双向门控循环单元(BiGRU)的网络安全态势评估方法,设计了一个由并行特征提取网络(PFEN)和基于注意力机制改进的BiGRU组成的深度... 针对目前网络安全态势评估方法在特征提取、高效性等方面存在的不足,该文提出了一种基于并行特征提取和改进双向门控循环单元(BiGRU)的网络安全态势评估方法,设计了一个由并行特征提取网络(PFEN)和基于注意力机制改进的BiGRU组成的深度学习模型(PFEN-ABiGRU)。PFEN模块由并行的稀疏编码器组成,用于差异化地提取不同网络威胁的关键信息并将提取的特征与原始信息融合;ABiGRU模块通过注意力机制对关键特征进行加权以提高模型的准确性。将训练好的PFEN-ABiGRU模型用于网络威胁检测,根据威胁检测结果,结合提出的网络安全态势量化指标,计算网络安全态势值。实验结果表明,PFEN-ABiGRU在精确率和召回率上均优于对比的其他模型。 展开更多
关键词 并行特征提取 注意力机制 双向门控循环单元(BiGRU) 态势评估
原文传递
RESEARCH ON SATELLITE IMAGE PROCESSING AND RECOGNITION WITH PARALLEL ALGORITHM 被引量:1
9
作者 刘正光 郭爱民 +1 位作者 程彦 刘勇 《Transactions of Tianjin University》 EI CAS 1999年第2期73-77,共5页
Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized... Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast. 展开更多
关键词 satellite cloud image extraction of morphological features mathematical morphology parallel processing
下载PDF
轻量级注意力X射线矿石检测方法 被引量:3
10
作者 杨文龙 郭明钰 《电子测量技术》 北大核心 2022年第18期71-79,共9页
针对缺乏矿石数据集和矿石分类识别模型等因素,自建以X射线照射成像的矿石图像为数据集,并以MobileNet V2为主网络,提出基于改进MobileNet V2轻量级矿石分类模型算法。首先,通过调整扩展因子和宽度因子大幅减少模型参数量,实现模型轻量... 针对缺乏矿石数据集和矿石分类识别模型等因素,自建以X射线照射成像的矿石图像为数据集,并以MobileNet V2为主网络,提出基于改进MobileNet V2轻量级矿石分类模型算法。首先,通过调整扩展因子和宽度因子大幅减少模型参数量,实现模型轻量化的目的;其次,通过在部分倒残差模块和原模型分类器中嵌入高效通道注意力机制,并将剩余倒残差模块替换为含深度空洞卷积的并行特征提取网络,以增强模型特征信息提取能力,提升模型识别准确率;最后,使用迁移学习的训练方式初始化权重,加速模型训练。经过改进,该算法矿石识别准确率提升至96.720%,对比VGG16、GoogleNet、Xception、ShuffleNet和MobileNet V2在准确率和矿石检测速度都获得了提升。综合而言,相比本文实验中其他算法而言,改进算法针对矿石的识别性能具有更佳表现。 展开更多
关键词 深度学习 X射线矿石图像分类 MobileNet V2 有效通道注意力机制 并行特征提取网络 迁移学习
下载PDF
结合LSTM与CNN的野外车辆声信号分类 被引量:3
11
作者 李翔 王艳 李宝清 《压电与声光》 CAS 北大核心 2021年第3期379-384,共6页
针对野外环境下微声传感器采集的小型轮式车、大型轮式车和履带车3种车辆声信号受风噪影响严重、分类性能较低的问题,提出了一种长短时记忆网络(LSTM)与多尺度、多层次特征融合卷积神经网络(CNN)相结合的分类算法——野外车辆识别算法(F... 针对野外环境下微声传感器采集的小型轮式车、大型轮式车和履带车3种车辆声信号受风噪影响严重、分类性能较低的问题,提出了一种长短时记忆网络(LSTM)与多尺度、多层次特征融合卷积神经网络(CNN)相结合的分类算法——野外车辆识别算法(FVNet)。该算法先采用一层LSTM网络提取声信号的时序特征,充分利用声信号的长时依赖关系;再用CNN并行提取多尺度特征,避免网络加深过程中特征的流失;引入通道注意力机制进行多尺度和多层次特征融合,增强多尺度、多层次关键特征信息;最后在相同数据集上进行验证。实验结果表明,FVNet算法对3种车辆的总识别率可达94.95%,与传统方法相比,其总识别率提高了14.61%,取得了较好的分类效果。 展开更多
关键词 车辆声信号分类 长短时记忆网络(LSTM) 卷积神经网络(CNN) 并行多尺度特征提取 通道注意力机制 特征融合
下载PDF
基于改进YOLO v5的烟包切层断面异物检测方法
12
作者 沈飞翔 陈成军 +2 位作者 王金磊 李东年 代成刚 《电子测试》 2022年第22期55-58,共4页
当前主流目标检测网络应用于烟包切层断面异物检测时存在召回率低、小目标异物大量漏检误检的问题,针对这一问题,本研究提出一种烟包切层断面异物检测网络YOLO v5-MFF。提出了多特征提取网络、多阶段并行融合机制,增强了网络对小目标异... 当前主流目标检测网络应用于烟包切层断面异物检测时存在召回率低、小目标异物大量漏检误检的问题,针对这一问题,本研究提出一种烟包切层断面异物检测网络YOLO v5-MFF。提出了多特征提取网络、多阶段并行融合机制,增强了网络对小目标异物的特征提取能力;引入ACON类激活函数,使网络根据数据动态选择激活与否及激活函数的表达形式,增强了网络的特征表达能力。实验表明,本研究提出的YOLO v5-MFF对烟包切层断面异物检测的召回率达到了94.2%,比YOLO v5地提升了了4.6%,明显提升了小目标异物的检测能力。 展开更多
关键词 异物检测 特征提取网络、多阶段并行融合机制 ACON激活函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部