期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“特征性”与“方向性”两种路径的博弈及其整合——总结社会主义建设道路探索过程的一个视角 被引量:1
1
作者 朱诗柱 《扬州大学税务学院学报》 2008年第2期1-5,共5页
科学社会主义运动的先驱者们在探索和回答"什么是社会主义、怎样建设社会主义"这个根本问题上,存在着"方向性"和"特征性"两种不同的路径。如何处理两种路径的关系是影响社会主义运动成功与曲折交替变化... 科学社会主义运动的先驱者们在探索和回答"什么是社会主义、怎样建设社会主义"这个根本问题上,存在着"方向性"和"特征性"两种不同的路径。如何处理两种路径的关系是影响社会主义运动成功与曲折交替变化的重要因素。我国通过改革开放开辟的社会主义建设的新道路,就是在正确认识中国初级阶段社会主义历史方位的基础上,通过对两种路径进行科学整合而形成和发展起来的。 展开更多
关键词 社会主义 建设道路 特征性路径 方向性路径 科学整合
下载PDF
Image feature optimization based on nonlinear dimensionality reduction 被引量:3
2
作者 Rong ZHU Min YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1720-1737,共18页
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping... Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 展开更多
关键词 Image feature optimization Nonlinear dimensionality reduction Manifold learning Locally linear embedding (LLE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部