In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
In this paper, by a nonlinear procedure of a eigenvalue problem, we get a Bargmann system and prove it is a completely in tegrable system in the meanning of Liouville. By the way, the involutive solutio n of the repr...In this paper, by a nonlinear procedure of a eigenvalue problem, we get a Bargmann system and prove it is a completely in tegrable system in the meanning of Liouville. By the way, the involutive solutio n of the representation equation is given.展开更多
Sufferers of breast cancer are often plagued by various psychological problems. Mastectomy, which has a serious influence on the female sex characteristics, can bring about especially serious psychological problems. T...Sufferers of breast cancer are often plagued by various psychological problems. Mastectomy, which has a serious influence on the female sex characteristics, can bring about especially serious psychological problems. These problems affect not only the patients’ quality of life but also the beginning, development, and end of the disease. This paper reviewed the relationships between the patients’ personal factors, the disease itself, treatment factors, and other socio-psychological factors and psychological conditions so as to provide new ideas for the psychological intervention on breast cancer patients, comprehensive clinical diagnosis and treatment, and prevention and cure.展开更多
The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficie...The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.展开更多
This article discuss on the existence condition and of Sturm-Liouville feature value by analyzing its existence, asymptotic distribution and locus formula in special instance.
Many applications in computational science and engineering require the computation of eigenvalues and vectors of dense symmetric or Hermitian matrices. For example, in DFT (density functional theory) calculations on...Many applications in computational science and engineering require the computation of eigenvalues and vectors of dense symmetric or Hermitian matrices. For example, in DFT (density functional theory) calculations on modern supercomputers 10% to 30% of the eigenvalues and eigenvectors of huge dense matrices have to be calculated. Therefore, performance and parallel scaling of the used eigensolvers is of upmost interest. In this article different routines of the linear algebra packages ScaLAPACK and Elemental for parallel solution of the symmetric eigenvalue problem are compared concerning their performance on the BlueGene/P supercomputer. Parameters for performance optimization are adjusted for the different data distribution methods used in the two libraries. It is found that for all test cases the new library Elemental which uses a two-dimensional element by element distribution of the matrices to the processors shows better performance than the old ScaLAPACK library which uses a block-cyclic distribution.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear ...We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.展开更多
The complexity of decoding the standard Reed-Solomon code is a well-known open problem in coding theory.The main problem is to compute the error distance of a received word.Using the Weil bound for character sum estim...The complexity of decoding the standard Reed-Solomon code is a well-known open problem in coding theory.The main problem is to compute the error distance of a received word.Using the Weil bound for character sum estimate,Li and Wan showed that the error distance can be determined when the degree of the received word as a polynomial is small.In the first part,the result of Li and Wan is improved.On the other hand,one of the important parameters of an error-correcting code is the dimension.In most cases,one can only get bounds for the dimension.In the second part,a formula for the dimension of the generalized trace Reed-Solomon codes in some cases is obtained.展开更多
By means of the continuous Glimm functional, a proof is given on the global existence of classical solutions to Cauchy problem for general first order quasilinear hyperbolic systems with small initial total variation.
In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of m...In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.展开更多
Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscilla...Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.展开更多
In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegat...In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.展开更多
The author gets a blow-up result of C1 solution to the Cauchy problem for a first order quasilinear non-strictly hyperbolic system in one space dimension.
It is well-known that many Krylov solvers for linear systems,eigenvalue problems,andsingular value decomposition problems have very simple and elegant formulas for residual norms.Theseformulas not only allow us to fur...It is well-known that many Krylov solvers for linear systems,eigenvalue problems,andsingular value decomposition problems have very simple and elegant formulas for residual norms.Theseformulas not only allow us to further understand the methods theoretically but also can be usedas cheap stopping criteria without forming approximate solutions and residuals at each step beforeconvergence takes place.LSQR for large sparse linear least squares problems is based on the Lanczosbidiagonalization process and is a Krylov solver.However,there has not yet been an analogouslyelegant formula for residual norms.This paper derives such kind of formula.In addition,the authorgets some other properties of LSQR and its mathematically equivalent CGLS.展开更多
The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response e...The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.展开更多
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘In this paper, by a nonlinear procedure of a eigenvalue problem, we get a Bargmann system and prove it is a completely in tegrable system in the meanning of Liouville. By the way, the involutive solutio n of the representation equation is given.
文摘Sufferers of breast cancer are often plagued by various psychological problems. Mastectomy, which has a serious influence on the female sex characteristics, can bring about especially serious psychological problems. These problems affect not only the patients’ quality of life but also the beginning, development, and end of the disease. This paper reviewed the relationships between the patients’ personal factors, the disease itself, treatment factors, and other socio-psychological factors and psychological conditions so as to provide new ideas for the psychological intervention on breast cancer patients, comprehensive clinical diagnosis and treatment, and prevention and cure.
基金Science Developing Plan of Beijing Educational Committee, Beijing Natural Science Fund (No. 3022003), and NationalNatural Science Fund of China(No.50375002)
文摘The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.
文摘This article discuss on the existence condition and of Sturm-Liouville feature value by analyzing its existence, asymptotic distribution and locus formula in special instance.
文摘Many applications in computational science and engineering require the computation of eigenvalues and vectors of dense symmetric or Hermitian matrices. For example, in DFT (density functional theory) calculations on modern supercomputers 10% to 30% of the eigenvalues and eigenvectors of huge dense matrices have to be calculated. Therefore, performance and parallel scaling of the used eigensolvers is of upmost interest. In this article different routines of the linear algebra packages ScaLAPACK and Elemental for parallel solution of the symmetric eigenvalue problem are compared concerning their performance on the BlueGene/P supercomputer. Parameters for performance optimization are adjusted for the different data distribution methods used in the two libraries. It is found that for all test cases the new library Elemental which uses a two-dimensional element by element distribution of the matrices to the processors shows better performance than the old ScaLAPACK library which uses a block-cyclic distribution.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
基金supported by National Natural Science Foundation of China (Grant Nos. 91330202, 11371026, 11201501, 11571389, 11001259 and 11031006)National Basic Research Program of China (Grant No. 2011CB309703)the National Center for Mathematics and Interdisciplinary Science, Chinese Academy of Sciences, the President Foundation of Academy of Mathematics and Systems Science, Chinese Academy of Sciences and the Program for Innovation Research in Central University of Finance and Economics
文摘We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.
基金Project supported by the National Natural Science Foundation of China (No.10990011)the Doctoral Program Foundation of Ministry of Education of China (No.20095134120001)the Sichuan Province Foundation of China (No. 09ZA087)
文摘The complexity of decoding the standard Reed-Solomon code is a well-known open problem in coding theory.The main problem is to compute the error distance of a received word.Using the Weil bound for character sum estimate,Li and Wan showed that the error distance can be determined when the degree of the received word as a polynomial is small.In the first part,the result of Li and Wan is improved.On the other hand,one of the important parameters of an error-correcting code is the dimension.In most cases,one can only get bounds for the dimension.In the second part,a formula for the dimension of the generalized trace Reed-Solomon codes in some cases is obtained.
文摘By means of the continuous Glimm functional, a proof is given on the global existence of classical solutions to Cauchy problem for general first order quasilinear hyperbolic systems with small initial total variation.
基金supported by the National Natural Science Foundation of China(Grant Nos.6133300861273153&61304027)
文摘In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.
基金supported by the National Natural Science Foundation of China (Grant No. 50595412)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB219700)
文摘Sensitivities of eigen-solutions to control variables play an important role in microgrid studies,such as coordinated optimal design of controllers and parameters,robust stability analysis on control variables,oscillation modes analysis on a system,etc.Considering the importance of sensitivities and the complexity of state matrix in a microgrid,parameter perturbations are utilized in this paper to analyze the construction characteristics of state matrix.Then,the sensitivities of eigenvalues and eigenvectors to control variables are obtained based on the first-order matrix perturbation theory,which makes the complex derivations of sensitivity formulas and repeated solutions of eigenvalue problem unnecessary.Finally,the effectiveness of the matrix perturbation based approach for sensitivity calculation in a microgrid is verified by a numerical example on a low-voltage microgrid prototype.
文摘In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.
文摘The author gets a blow-up result of C1 solution to the Cauchy problem for a first order quasilinear non-strictly hyperbolic system in one space dimension.
基金supported in part by the National Science Foundation of China under Grant No. 10771116the Doctoral Program of the Ministry of Education under Grant No. 20060003003
文摘It is well-known that many Krylov solvers for linear systems,eigenvalue problems,andsingular value decomposition problems have very simple and elegant formulas for residual norms.Theseformulas not only allow us to further understand the methods theoretically but also can be usedas cheap stopping criteria without forming approximate solutions and residuals at each step beforeconvergence takes place.LSQR for large sparse linear least squares problems is based on the Lanczosbidiagonalization process and is a Krylov solver.However,there has not yet been an analogouslyelegant formula for residual norms.This paper derives such kind of formula.In addition,the authorgets some other properties of LSQR and its mathematically equivalent CGLS.
基金supported by National Science Foundation of USA(Grant Nos.DMS1522697,CCF-1527091,DMS-1317330 and CCF-1527091)National Natural Science Foundation of China(Grant No.11428104)
文摘The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.