This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characterist...This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characteristics by the analyzer of CIS-50 and the scan electronic microscope of S-570 in the non-heating period and heating period respectively. The results show that the coarse aerosol particle size distribution mode is 2-4μm in the non-heating period and 3-5μm in the heating period, with the size range of 0.8-120μm, mostly under 10μm; and the square or square like particle shape is dominant, the sphere like lesser, the acute-angle and lathy shape sparse. There exist particle size distribution and shape characteristics differences in the non-heating period and heating period influenced greatly by the ground coal combustion emission and windblown dust. In the heating period, particle size average increases by 53.2%, principally in the size range of 5-10μm, and 20-50μm secondly. Meanwhile, the particle number of quasi-round and round shape group and those with convex-concave fractal edge increase obviously. These quasi-round particles are agglomerate derived from combustion in the SEM images. The relationship between particle size and shape is demonstrated by that the percentage of PM5 and the particle number of the quasi-square and square shape group are positively correlative with r of 0.9458; quasi-round and round shape group negatively correlative with r of-0.9726 respectively.展开更多
The general characteristics of climate changes over the past 2000 years in China,regional differences and uncertainties were analyzed based on the recently peer-reviewed high time-resolution climatic reconstructions.T...The general characteristics of climate changes over the past 2000 years in China,regional differences and uncertainties were analyzed based on the recently peer-reviewed high time-resolution climatic reconstructions.The results showed that there exists four warm periods of the temperature variation in China since the Qin Dynasty,including the western and eastern Han Dynasties(200 BC-AD 180),the Sui and Tang dynasties(541-810),the Song and Yuan dynasties(931-1320),and the 20th century,and three cold phases involving the Wei,Jin,and North-South Dynasties(181-540),the late Tang Dynasty(811-930),and the Ming and Qing dynasties(1321-1920).The Song and Yuan warm period is consistent with the Medieval Warm Period over the Northern Hemisphere,and the cold phases of the North-South Dynasties and the Ming and Qing dynasties are paralleled to the Dark Ages Cold Period and the Little Ice Age,respectively.The 13th-15th century could be a shift to the wet condition of the climate,and the low precipitation variability is exhibited in western China prior to 1500.In the context of the climate warming,the pattern of the drought in north and flood in south is prevalent over the eastern China.In addition,the published reconstructions have a high level of confidence for the past 500 years,but large uncertainties exist prior to the 16th century.展开更多
基金Acknowledgements: The study is supported by the Hebei Province Natural Science Foundation (No. D200500176) and the open fund of Hebei Provincial Key Lab of Ecology and Environment Monitoring (No. SYSKF0604). The authors thank for the help of professor LI Ji-biao for the SEM observation and the support from the size analysis lab of Hebei Normal University.
文摘This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characteristics by the analyzer of CIS-50 and the scan electronic microscope of S-570 in the non-heating period and heating period respectively. The results show that the coarse aerosol particle size distribution mode is 2-4μm in the non-heating period and 3-5μm in the heating period, with the size range of 0.8-120μm, mostly under 10μm; and the square or square like particle shape is dominant, the sphere like lesser, the acute-angle and lathy shape sparse. There exist particle size distribution and shape characteristics differences in the non-heating period and heating period influenced greatly by the ground coal combustion emission and windblown dust. In the heating period, particle size average increases by 53.2%, principally in the size range of 5-10μm, and 20-50μm secondly. Meanwhile, the particle number of quasi-round and round shape group and those with convex-concave fractal edge increase obviously. These quasi-round particles are agglomerate derived from combustion in the SEM images. The relationship between particle size and shape is demonstrated by that the percentage of PM5 and the particle number of the quasi-square and square shape group are positively correlative with r of 0.9458; quasi-round and round shape group negatively correlative with r of-0.9726 respectively.
基金supported by grants to IGSNRR from China Global Change Research Program of MOST (Grant No. 2010CB950101)the Chinese Academy of Sciences (Grant No. XDA05080100)National Natural Science Foundation of China (Grant No. 41071029)
文摘The general characteristics of climate changes over the past 2000 years in China,regional differences and uncertainties were analyzed based on the recently peer-reviewed high time-resolution climatic reconstructions.The results showed that there exists four warm periods of the temperature variation in China since the Qin Dynasty,including the western and eastern Han Dynasties(200 BC-AD 180),the Sui and Tang dynasties(541-810),the Song and Yuan dynasties(931-1320),and the 20th century,and three cold phases involving the Wei,Jin,and North-South Dynasties(181-540),the late Tang Dynasty(811-930),and the Ming and Qing dynasties(1321-1920).The Song and Yuan warm period is consistent with the Medieval Warm Period over the Northern Hemisphere,and the cold phases of the North-South Dynasties and the Ming and Qing dynasties are paralleled to the Dark Ages Cold Period and the Little Ice Age,respectively.The 13th-15th century could be a shift to the wet condition of the climate,and the low precipitation variability is exhibited in western China prior to 1500.In the context of the climate warming,the pattern of the drought in north and flood in south is prevalent over the eastern China.In addition,the published reconstructions have a high level of confidence for the past 500 years,but large uncertainties exist prior to the 16th century.