The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with E...The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.展开更多
文摘The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.