为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM...为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM)建立分类模型;最后采用KDD CUP 99数据集对PSO-IG的性能进行测试。测试结果表明:PSO-IG消除了冗余特征,降低了输入维数,提高了网络入侵检测速度;通过合理确定特征权值,提高了入侵检测正确率。展开更多
渔业文本分类是充分利用渔业信息资源的有效途径。针对中文文献资料的结构特点,提出一种结合特征词权值和支持向量机(Support Vector Machine,SVM)的渔业文本分类方法,利用向量空间模型(Vector Space Model,VSM)构建文本向量空间,并结...渔业文本分类是充分利用渔业信息资源的有效途径。针对中文文献资料的结构特点,提出一种结合特征词权值和支持向量机(Support Vector Machine,SVM)的渔业文本分类方法,利用向量空间模型(Vector Space Model,VSM)构建文本向量空间,并结合特征词权值计算文本特征向量中的各特征项,将构建的文本向量送入SVM进行渔业文本分类。采用中国知网下载的标准文档进行了实验测试,并考察了准确率和召回率两个指标,实验结果表明,文章提出的渔业文本分类方法具有较好的分类效果。展开更多
文摘为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM)建立分类模型;最后采用KDD CUP 99数据集对PSO-IG的性能进行测试。测试结果表明:PSO-IG消除了冗余特征,降低了输入维数,提高了网络入侵检测速度;通过合理确定特征权值,提高了入侵检测正确率。
文摘渔业文本分类是充分利用渔业信息资源的有效途径。针对中文文献资料的结构特点,提出一种结合特征词权值和支持向量机(Support Vector Machine,SVM)的渔业文本分类方法,利用向量空间模型(Vector Space Model,VSM)构建文本向量空间,并结合特征词权值计算文本特征向量中的各特征项,将构建的文本向量送入SVM进行渔业文本分类。采用中国知网下载的标准文档进行了实验测试,并考察了准确率和召回率两个指标,实验结果表明,文章提出的渔业文本分类方法具有较好的分类效果。