期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于样本特征核矩阵的稀疏双线性回归 被引量:2
1
作者 邵政毅 陈秀宏 《计算机科学》 CSCD 北大核心 2021年第10期185-190,共6页
在许多实际应用中出现了大量的冗余数据,这些数据可能是高维的,这时进行回归预测将会出现过拟合的现象,并且还会出现预测精度偏低等问题。另外,大多数回归方法都是基于向量的,忽略了矩阵数据原始位置之间的关系。为此,文中提出了一种基... 在许多实际应用中出现了大量的冗余数据,这些数据可能是高维的,这时进行回归预测将会出现过拟合的现象,并且还会出现预测精度偏低等问题。另外,大多数回归方法都是基于向量的,忽略了矩阵数据原始位置之间的关系。为此,文中提出了一种基于样本特征核矩阵的稀疏双线性回归(Kernel Matrix-based Sparse Bilinear Regression,KMSBR)方法。该方法直接将数据矩阵作为输入,其是通过左右回归系数矩阵而建立的,利用样本的特征核矩阵和L 2,1范数,能够同时实现对样本及样本特征的选择,且考虑了数据的原始位置,提高了算法的性能。在若干数据集上的实验结果表明,KMSBR能有效地选择相对重要的样本和特征,从而提高算法的运行效率,且其预测精度优于已有的几种回归模型。 展开更多
关键词 特征核矩阵 线性回归 样本与特征提取 稀疏性 左右回归矩阵
下载PDF
基于KJADE的列车轴承轨边声学诊断方法研究 被引量:8
2
作者 龙磊 何兵 +3 位作者 刘方 刘永斌 李桂华 陆思良 《振动.测试与诊断》 EI CSCD 北大核心 2020年第4期781-787,828,829,共9页
为在线诊断运行列车的轴承状态,提出一种基于核特征矩阵联合近似对角化(kernel joint approximate diagonalization of eigen-matrices,简称KJADE)的列车轴承轨边声学故障诊断方法。首先,从校正后的轨边信号中提取原始特征,将其通过非... 为在线诊断运行列车的轴承状态,提出一种基于核特征矩阵联合近似对角化(kernel joint approximate diagonalization of eigen-matrices,简称KJADE)的列车轴承轨边声学故障诊断方法。首先,从校正后的轨边信号中提取原始特征,将其通过非线性映射函数映射到高维特征空间;其次,对特征空间的核矩阵进行四阶累积量的特征分解,获得新融合特征,并采用支持向量机分类器对融合特征进行辨识;最后,对轴承外圈、内圈、滚子故障和正常4种状态下的列车轨边声学信号进行分析。结果表明,该方法可以有效实现对列车轴承轨边声音信号的非线性特征提取,提高了故障的识别率。 展开更多
关键词 特征矩阵联合近似对角化 列车轴承 故障诊断 多普勒校正
下载PDF
A novel shapelet transformation method for classification of multivariate time series with dynamic discriminative subsequence and application in anode current signals 被引量:3
3
作者 WAN Xiao-xue CHEN Xiao-fang +2 位作者 GUI Wei-hua YUE Wei-chao XIE Yong-fang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期114-131,共18页
Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not conside... Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS. 展开更多
关键词 anode current signals key features distance matrix feature of similarity numbers shapelet transformation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部