In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micr...In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.展开更多
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com...By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.展开更多
To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-le...To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.
文摘By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.
基金The National Natural Science Foundation of China(No.U22A20178)National Key Research and Development Program of China(No.2022YFB3404800)Jiangsu Province Science and Technology Achievement Transformation Special Fund Program(No.BA2023019).
文摘To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.