在基于评论的推荐算法中,文本特征通常会在训练中发生损失,导致最后的特征交互不足,影响推荐效果。为了获取包含更多信息的文本特征,得到更准确的预测值,文章提出一种基于评论的多特征融合深度协同推荐算法。该算法首先对评论文本进行...在基于评论的推荐算法中,文本特征通常会在训练中发生损失,导致最后的特征交互不足,影响推荐效果。为了获取包含更多信息的文本特征,得到更准确的预测值,文章提出一种基于评论的多特征融合深度协同推荐算法。该算法首先对评论文本进行预处理,然后通过由卷积文本网络和双向GRU网络构成的C&G模块进行多特征提取,同时引入注意力机制,最后在融合层进行融合预测。在Amazon Digital Music数据集上的实验结果表明,该算法的准确度较高,推荐效果较好。展开更多
针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合...针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合;最后,前向边界识别模块基于义原构造的实体类别特征和自注意力机制得到实体类别增强的候选尾词表征,融合领域实体类别特征,利用双仿射编码器计算特定尾词和实体类型的实体跨度概率,从而确定命名实体。在某汽车企业生产线故障数据集、汽车工业故障抽取评测数据集CCL2022和中文医学文本数据集CHIP2020上进行模型验证。实验结果表明,所提模型在前两个数据集上的实体识别F1值比序列标注模型(BERT+BiLSTM+CRF)、基于跨度的实体抽取模型(PURE(Princeton University Relation Extraction)、SpERT(Span-based Entity and Relation Transformer))分别提高了4.1、1.8、1.6个百分点和9.0、5.4、7.3个百分点;在第一个数据集和第三个数据集中嵌套实体识别F1值与PURE、SpERT模型相比提高了13.3、8.3个百分点和21.7、9.3个百分点,验证了所提模型在嵌套实体识别上的有效性。展开更多
文摘在基于评论的推荐算法中,文本特征通常会在训练中发生损失,导致最后的特征交互不足,影响推荐效果。为了获取包含更多信息的文本特征,得到更准确的预测值,文章提出一种基于评论的多特征融合深度协同推荐算法。该算法首先对评论文本进行预处理,然后通过由卷积文本网络和双向GRU网络构成的C&G模块进行多特征提取,同时引入注意力机制,最后在融合层进行融合预测。在Amazon Digital Music数据集上的实验结果表明,该算法的准确度较高,推荐效果较好。
文摘针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合;最后,前向边界识别模块基于义原构造的实体类别特征和自注意力机制得到实体类别增强的候选尾词表征,融合领域实体类别特征,利用双仿射编码器计算特定尾词和实体类型的实体跨度概率,从而确定命名实体。在某汽车企业生产线故障数据集、汽车工业故障抽取评测数据集CCL2022和中文医学文本数据集CHIP2020上进行模型验证。实验结果表明,所提模型在前两个数据集上的实体识别F1值比序列标注模型(BERT+BiLSTM+CRF)、基于跨度的实体抽取模型(PURE(Princeton University Relation Extraction)、SpERT(Span-based Entity and Relation Transformer))分别提高了4.1、1.8、1.6个百分点和9.0、5.4、7.3个百分点;在第一个数据集和第三个数据集中嵌套实体识别F1值与PURE、SpERT模型相比提高了13.3、8.3个百分点和21.7、9.3个百分点,验证了所提模型在嵌套实体识别上的有效性。