期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于三维重建的多角度葡萄叶病害识别方法研究
1
作者
方逵
李成
+1 位作者
何潇
陈益能
《中国农业科技导报》
CAS
CSCD
北大核心
2022年第7期86-96,共11页
为了解决葡萄在生长过程中因病害侵袭导致品质和产量下降的问题,提出了基于三维重建的多角度图像识别模型。该模型通过三维建模技术对数据进行增强,并扩充数据集用于特征辅助训练,最后与卷积神经网络相结合实现对葡萄叶片病害的识别。...
为了解决葡萄在生长过程中因病害侵袭导致品质和产量下降的问题,提出了基于三维重建的多角度图像识别模型。该模型通过三维建模技术对数据进行增强,并扩充数据集用于特征辅助训练,最后与卷积神经网络相结合实现对葡萄叶片病害的识别。在测试集上,训练的3D-MobileNet、3D-Darknet53、3D-resnet34和3D-Resnet101模型相比原模型对葡萄叶片病害识别的准确率分别提高了7.2%、9.6%、10.2%、19.1%。结果表明,提出的基于三维的多角度葡萄叶片病害识别方法能够有效识别葡萄叶病害,为实现葡萄病害的自动识别提供参考。
展开更多
关键词
三维重建
特征辅助训练
病害识别
卷积神经网络
识别准确率
下载PDF
职称材料
题名
基于三维重建的多角度葡萄叶病害识别方法研究
1
作者
方逵
李成
何潇
陈益能
机构
湖南农业大学信息与智能科学技术学院
出处
《中国农业科技导报》
CAS
CSCD
北大核心
2022年第7期86-96,共11页
基金
湖南省重点研发计划项目(2017NK2381)。
文摘
为了解决葡萄在生长过程中因病害侵袭导致品质和产量下降的问题,提出了基于三维重建的多角度图像识别模型。该模型通过三维建模技术对数据进行增强,并扩充数据集用于特征辅助训练,最后与卷积神经网络相结合实现对葡萄叶片病害的识别。在测试集上,训练的3D-MobileNet、3D-Darknet53、3D-resnet34和3D-Resnet101模型相比原模型对葡萄叶片病害识别的准确率分别提高了7.2%、9.6%、10.2%、19.1%。结果表明,提出的基于三维的多角度葡萄叶片病害识别方法能够有效识别葡萄叶病害,为实现葡萄病害的自动识别提供参考。
关键词
三维重建
特征辅助训练
病害识别
卷积神经网络
识别准确率
Keywords
three-dimensional reconstruction
feature aided training
identify disease
convolutional neuralnetwork
recognition accuracy
分类号
S126 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于三维重建的多角度葡萄叶病害识别方法研究
方逵
李成
何潇
陈益能
《中国农业科技导报》
CAS
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部