微型共轴直升机因对控制输入和外在扰动较敏感,且本身具有较高的动态脉宽,使得其难于控制。提出一种基于特征速率配置(characteristic ratio assignment,CRA)的多项式设计方案来控制直升机的姿态回路。因CRA综合考虑时域稳态指标、系统...微型共轴直升机因对控制输入和外在扰动较敏感,且本身具有较高的动态脉宽,使得其难于控制。提出一种基于特征速率配置(characteristic ratio assignment,CRA)的多项式设计方案来控制直升机的姿态回路。因CRA综合考虑时域稳态指标、系统鲁棒性以及广义时间常量来配置系统特征多项式,从而设计控制器。针对CRA设计控制器阶次的不明确,提出依据CRA设计满足一定性能指标的定阶次的类PID控制器。仿真分析证实了提出的控制方法简单可行。展开更多
Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many ...Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.展开更多
An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model i...An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.展开更多
The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the def...The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods.展开更多
A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction f...A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.展开更多
Based on the study of single pattern matching, MBF algorithm is proposed by imitating the string searching procedure of human. The algorithm preprocesses the pattern by using the idea of Quick Search algorithm and the...Based on the study of single pattern matching, MBF algorithm is proposed by imitating the string searching procedure of human. The algorithm preprocesses the pattern by using the idea of Quick Search algorithm and the already-matched pattern psefix and suffix information. In searching phase, the algorithm makes use of the!character using frequency and the continue-skip idea. The experiment shows that MBF algorithm is more efficient than other algorithms.展开更多
The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental c...The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.展开更多
文摘微型共轴直升机因对控制输入和外在扰动较敏感,且本身具有较高的动态脉宽,使得其难于控制。提出一种基于特征速率配置(characteristic ratio assignment,CRA)的多项式设计方案来控制直升机的姿态回路。因CRA综合考虑时域稳态指标、系统鲁棒性以及广义时间常量来配置系统特征多项式,从而设计控制器。针对CRA设计控制器阶次的不明确,提出依据CRA设计满足一定性能指标的定阶次的类PID控制器。仿真分析证实了提出的控制方法简单可行。
文摘Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.
基金Supported by the Chung Yuan Christian University (CYCU-97-CR-CE)
文摘An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.
基金Projects(51774196,51804181,51874190)supported by the National Natural Science Foundation of ChinaProject(2019GSF111020)supported by the Key R&D Program of Shandong Province,ChinaProject(201908370205)supported by the China Scholarship Council。
文摘The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods.
基金Financial support for this study, provided by the Key Basic Research Program of China (973) (No. 2007CB209407), is gratefully acknowledged
文摘A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.
文摘Based on the study of single pattern matching, MBF algorithm is proposed by imitating the string searching procedure of human. The algorithm preprocesses the pattern by using the idea of Quick Search algorithm and the already-matched pattern psefix and suffix information. In searching phase, the algorithm makes use of the!character using frequency and the continue-skip idea. The experiment shows that MBF algorithm is more efficient than other algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.11132010 and 11072236)the 111 Project(GrantNo.B07033)
文摘The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.