期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于XGBoost与特征重要性筛选的闪电预报模型构建研究 被引量:6
1
作者 陶世银 贺敬安 《国外电子测量技术》 北大核心 2022年第1期99-105,共7页
使用2019年5~7月青海地区的ERA5再分析资料与同期闪电定位资料,结合机器学习方法构建闪电发生的预报模型。首先选取ERA5中与闪电发生具有较好相关性的特征,及对应闪电定位数据,基于XGBoost算法训练初始模型,得到特征重要性排序;其次引... 使用2019年5~7月青海地区的ERA5再分析资料与同期闪电定位资料,结合机器学习方法构建闪电发生的预报模型。首先选取ERA5中与闪电发生具有较好相关性的特征,及对应闪电定位数据,基于XGBoost算法训练初始模型,得到特征重要性排序;其次引入特征重要性筛选方法,用以去除无效的噪声特征,利用筛选后的数据重新训练得到最终模型;最后使用同年8月中下旬的数据对预报模型的性能进行测试。结果表明,相比传统的支持向量机(SVM)闪电预报模型,基于XGBoost构建的初始模型在各预报评价指标上的提升明显。而经过特征重要性筛选后的最终模型,在测试数据上的预报命中率为0.779,虚警率为0.838,临界成功指数为0.154,相较与初始模型,平均预报性能进一步提升了9%。 展开更多
关键词 闪电预报 机器学习 特征重要性筛选 XGBoost ERA5
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部