期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于累积贡献率和可解释人工智能的静态电压稳定裕度估计特征量筛选方法 被引量:3
1
作者 高晗 蔡国伟 +2 位作者 杨德友 王丽馨 杨浩 《电力自动化设备》 EI CSCD 北大核心 2023年第4期168-176,共9页
利用海量量测数据估计大规模互联电网静态电压稳定裕度时,合理地选择输入量测信号和裕度估计算法是实现高质量裕度估计的基础。提出了一种基于累积贡献率和可解释人工智能的关键特征量筛选方法。给出了基于沙普利值加性解释理论可解释... 利用海量量测数据估计大规模互联电网静态电压稳定裕度时,合理地选择输入量测信号和裕度估计算法是实现高质量裕度估计的基础。提出了一种基于累积贡献率和可解释人工智能的关键特征量筛选方法。给出了基于沙普利值加性解释理论可解释模型的输入特征贡献值量化方法,并依据贡献值大小对特征降序排列;采用基于累积贡献率增量的循环优化过程剔除冗余特征,形成关键特征子集;在系统关键特征优选的基础上,采用轻量梯度提升机算法实现静态电压稳定裕度在线估计。所提方法在保证估计精度的同时,大幅降低初始样本维度,解决特征过拟合问题,有效提升静态电压稳定裕度估计在线性能。基于WECC 3机9节点系统、IEEE 10机39节点系统以及IEEE 300节点系统的仿真分析验证了所提关键特征量筛选方法在电力系统静态电压稳定裕度估计中的有效性。 展开更多
关键词 静态电压稳定裕度 累积贡献率增 可解释人工智能 梯度提升机 关键特征量筛选
下载PDF
基于WD-LSTM的风电机组叶片结冰状态评测 被引量:4
2
作者 刘杰 杨娜 +1 位作者 谭玉涛 孙兴伟 《太阳能学报》 EI CAS CSCD 北大核心 2022年第8期399-408,共10页
为有效识别叶片结冰状态,尽早采取除冰措施,提出基于小波去噪的长短期记忆神经网络(WD-LSTM)的评测方法。首先基于过采样与欠采样相结合的方法解决SCADA系统数据中的类别不平衡问题,通过对叶片结冰相关的26项指标进行分析,并从结冰机理... 为有效识别叶片结冰状态,尽早采取除冰措施,提出基于小波去噪的长短期记忆神经网络(WD-LSTM)的评测方法。首先基于过采样与欠采样相结合的方法解决SCADA系统数据中的类别不平衡问题,通过对叶片结冰相关的26项指标进行分析,并从结冰机理和数据探索的角度筛选特征量,小波去噪处理后建立WD-LSTM模型,进一步完成模型的训练和测试。分别以15号和21号风电机组为例进行模型验证,通过与LSTM、概率神经网络(PNN)模型和BP神经网络模型进行对比。结果表明,WD-LSTM方法在风电机组叶片结冰评测中的准确率可达98%,优于其他方法。 展开更多
关键词 风电机组叶片 长短期记忆 状态评测 特征量筛选 小波去噪 结冰状态
下载PDF
A selective overview of feature screening for ultrahigh-dimensional data 被引量:10
3
作者 LIU JingYuan ZHONG Wei LI RunZe 《Science China Mathematics》 SCIE CSCD 2015年第10期2033-2054,共22页
High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional dat... High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional data poses many challenges for statisticians. Feature selection and variable selection are fundamental for high-dimensional data analysis. The sparsity principle, which assumes that only a small number of predictors contribute to the response, is frequently adopted and deemed useful in the analysis of high-dimensional data.Following this general principle, a large number of variable selection approaches via penalized least squares or likelihood have been developed in the recent literature to estimate a sparse model and select significant variables simultaneously. While the penalized variable selection methods have been successfully applied in many highdimensional analyses, modern applications in areas such as genomics and proteomics push the dimensionality of data to an even larger scale, where the dimension of data may grow exponentially with the sample size. This has been called ultrahigh-dimensional data in the literature. This work aims to present a selective overview of feature screening procedures for ultrahigh-dimensional data. We focus on insights into how to construct marginal utilities for feature screening on specific models and motivation for the need of model-free feature screening procedures. 展开更多
关键词 correlation learning distance correlation sure independence screening sure joint screening sure screening property ultrahigh-dim
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部