The sufficient and necessary conditions, the existence and uniqueness of a new class of central configuration in R^3, for the conjugate-nest consisting of two regular tetrahedrons, are proved. If the configuration is ...The sufficient and necessary conditions, the existence and uniqueness of a new class of central configuration in R^3, for the conjugate-nest consisting of two regular tetrahedrons, are proved. If the configuration is a central configuration, then all masses of outside layer are equivalent, and the masses of inside layer are also equivalent. At the same time p (the ratio of the sizes) and mass ratio τ=m^/m must be satisfied by some formulas. For any radius ratios ρ∈(0, 0.152996 918 2) or (0.715 223 148 7, 1.398 165 037), there is only one central configuration. Otherwise, for any given mass ratio τ, there may exist more than one central configuration.展开更多
Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in moun...Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in mountainous terrain. Mountainous terrain mapping using ALOS image faces numerous challenges. These include spectral confusion with other land cover features, topographic effects on spectral signatures (such as shadow). At first, topographic radiometric correction was carried out to remove the illumination effects of topography. In addition to spectral features, texture features were used to assist classification in this paper. And texture features extracted based on GLCM (Gray Level Co- occurrence Matrix) were not only used for segmentation, but also used for building rules. The performance of the method was evaluated and compared with Maximum Likelihood Classification (MLC). Results showed that the object-oriented method integrating spectral and texture features has achieved overall accuracy of 85.73% with a kappa coefficient of 0.824, which is 13.48% and o.145 respectively higher than that got by MLC method. It indicated that texture features can significantly improve overall accuracy, kappa coefficient, and the classification precision of existing spectrum confusion features. Object-oriented method Integrating spectral and texture features is suitable for land use extraction of ALOS image in mountainous terrain.展开更多
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocki...A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography(ERT), Terrestrial Laser Scanning(TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part(0~41 m) of the landslide was greaterthan in the central-front part(41~84 m) and(2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure:(1) gully erosion at the slope surface;(2) shallow sliding failure;(3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement(using traditional methods) indicated that long duration light rainfall(average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding(30.09 mm/d) during the critical failure sub-phase(EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.展开更多
基金Funded by Natural Science Foundation of China (No. 10231010)KJ of Chongqing Educational Committee (No.KJ071105)and Chongqing Three Gorges University (No. SXXYYB07004).
文摘The sufficient and necessary conditions, the existence and uniqueness of a new class of central configuration in R^3, for the conjugate-nest consisting of two regular tetrahedrons, are proved. If the configuration is a central configuration, then all masses of outside layer are equivalent, and the masses of inside layer are also equivalent. At the same time p (the ratio of the sizes) and mass ratio τ=m^/m must be satisfied by some formulas. For any radius ratios ρ∈(0, 0.152996 918 2) or (0.715 223 148 7, 1.398 165 037), there is only one central configuration. Otherwise, for any given mass ratio τ, there may exist more than one central configuration.
基金supported jointly by Key Laboratory of Geo-special Information Technology, Ministry of Land and Resources (Grant No. KLGSIT2013-12)Knowledge Innovation Program (Grant No. KSCX1-YW-09-01) of Chinese Academy of Sciences
文摘Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in mountainous terrain. Mountainous terrain mapping using ALOS image faces numerous challenges. These include spectral confusion with other land cover features, topographic effects on spectral signatures (such as shadow). At first, topographic radiometric correction was carried out to remove the illumination effects of topography. In addition to spectral features, texture features were used to assist classification in this paper. And texture features extracted based on GLCM (Gray Level Co- occurrence Matrix) were not only used for segmentation, but also used for building rules. The performance of the method was evaluated and compared with Maximum Likelihood Classification (MLC). Results showed that the object-oriented method integrating spectral and texture features has achieved overall accuracy of 85.73% with a kappa coefficient of 0.824, which is 13.48% and o.145 respectively higher than that got by MLC method. It indicated that texture features can significantly improve overall accuracy, kappa coefficient, and the classification precision of existing spectrum confusion features. Object-oriented method Integrating spectral and texture features is suitable for land use extraction of ALOS image in mountainous terrain.
基金funded by International S&T Cooperation Program of China (ISTCP) (Grant No. 2013DFE23030)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2014-273 and lzujbky-2015-133)
文摘A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography(ERT), Terrestrial Laser Scanning(TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part(0~41 m) of the landslide was greaterthan in the central-front part(41~84 m) and(2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure:(1) gully erosion at the slope surface;(2) shallow sliding failure;(3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement(using traditional methods) indicated that long duration light rainfall(average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding(30.09 mm/d) during the critical failure sub-phase(EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.