Based on nonlinear failure criterion,a three-dimensional failure mechanism of the possible collapse of deep tunnel is presented with limit analysis theory.Support pressure is taken into consideration in the virtual wo...Based on nonlinear failure criterion,a three-dimensional failure mechanism of the possible collapse of deep tunnel is presented with limit analysis theory.Support pressure is taken into consideration in the virtual work equation performed under the upper bound theorem.It is necessary to point out that the properties of surrounding rock mass plays a vital role in the shape of collapsing rock mass.The first order reliability method and Monte Carlo simulation method are then employed to analyze the stability of presented mechanism.Different rock parameters are considered random variables to value the corresponding reliability index with an increasing applied support pressure.The reliability indexes calculated by two methods are in good agreement.Sensitivity analysis was performed and the influence of coefficient variation of rock parameters was discussed.It is shown that the tensile strength plays a much more important role in reliability index than dimensionless parameter,and that small changes occurring in the coefficient of variation would make great influence of reliability index.Thus,significant attention should be paid to the properties of surrounding rock mass and the applied support pressure to maintain the stability of tunnel can be determined for a given reliability index.展开更多
A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference...A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference of modal curvature(DMC) are used as damage indexes. Firstly, the detection of the occurrence of damage is addressed by the frequency or the square of frequency change. Then the damage location inside the structure is measured by the DMC. Finally, with the stiffness reduction rate as a damage factor, the amount of damage is estimated by the optimization algorithm. The three-step damage identification method has been validated by conducting the simulation on a cantilever beam and the shaking table test on a submerged bridge. The results show that the method proposed in this paper can effectively solve the damage identification problem in theory and engineering practice.展开更多
基金Project (2013CB036004) supported by National Basic Research Program of China
文摘Based on nonlinear failure criterion,a three-dimensional failure mechanism of the possible collapse of deep tunnel is presented with limit analysis theory.Support pressure is taken into consideration in the virtual work equation performed under the upper bound theorem.It is necessary to point out that the properties of surrounding rock mass plays a vital role in the shape of collapsing rock mass.The first order reliability method and Monte Carlo simulation method are then employed to analyze the stability of presented mechanism.Different rock parameters are considered random variables to value the corresponding reliability index with an increasing applied support pressure.The reliability indexes calculated by two methods are in good agreement.Sensitivity analysis was performed and the influence of coefficient variation of rock parameters was discussed.It is shown that the tensile strength plays a much more important role in reliability index than dimensionless parameter,and that small changes occurring in the coefficient of variation would make great influence of reliability index.Thus,significant attention should be paid to the properties of surrounding rock mass and the applied support pressure to maintain the stability of tunnel can be determined for a given reliability index.
基金Supported by the National Basic Research Program of China("973"Program,No.2011CB013605-4)the National Natural Science Foundation of China(No.51178079)the Major Program of National Natural Science Foundation of China(No.90915011 and No.91315301)
文摘A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference of modal curvature(DMC) are used as damage indexes. Firstly, the detection of the occurrence of damage is addressed by the frequency or the square of frequency change. Then the damage location inside the structure is measured by the DMC. Finally, with the stiffness reduction rate as a damage factor, the amount of damage is estimated by the optimization algorithm. The three-step damage identification method has been validated by conducting the simulation on a cantilever beam and the shaking table test on a submerged bridge. The results show that the method proposed in this paper can effectively solve the damage identification problem in theory and engineering practice.