Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices und...Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices under the organicorganic interface limited current conduction is developed. The dependence of current, field,and carrier distribution in bilayer organic devices with the structure of "injection electrode/Layer Ⅰ/Layer Ⅱ/collection electrode" on temperature are numerically analyzed. We conclude that, for a given applied voltage, when temperature is raised, the voltage of LayerⅠ will increase,and the field will be higher. Meanwhile, the voltage of Layer Ⅲ will decrease, the field will become weaker accordingly,and the current of the device will increase.展开更多
We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping paramet...We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping parameter. Then we show that the global solution converges to that of the Schr¨odinger maps in the natural space as the Gilbert damping term vanishes. The proof is based on some studies on the derivative Ginzburg-Landau equations.展开更多
文摘Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices under the organicorganic interface limited current conduction is developed. The dependence of current, field,and carrier distribution in bilayer organic devices with the structure of "injection electrode/Layer Ⅰ/Layer Ⅱ/collection electrode" on temperature are numerically analyzed. We conclude that, for a given applied voltage, when temperature is raised, the voltage of LayerⅠ will increase,and the field will be higher. Meanwhile, the voltage of Layer Ⅲ will decrease, the field will become weaker accordingly,and the current of the device will increase.
基金supported by Australian Research Council Discovery Project (Grant No. DP170101060)National Natural Science Foundation of China (Grant No. 11201498)the China Scholarship Council (Grant No. 201606495010)
文摘We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping parameter. Then we show that the global solution converges to that of the Schr¨odinger maps in the natural space as the Gilbert damping term vanishes. The proof is based on some studies on the derivative Ginzburg-Landau equations.