Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The resu...Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.展开更多
基金Project(50378062)supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject supported by Key Laboratory Program of the Ministry of Education,China
文摘Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.