Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in c...Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in controlling the effect of an extremely thick igneous rock, found above a main mining coal seam in an area prone to coal mine disasters in the Haizi Coal Mine. The results show that this igneous rock, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close. The presence of igneous rock plays an important role in rock bursts, mine floods, gas outburst and surface subsidence in coal mines. By analyzing the rules in controlling the effect of this igneous rock, we provide useful references for safety and high efficiency mining in coal mines under special geological conditions.展开更多
Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcet...Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcetransferring mechanism and stressfield distribution formed by roadway surrounding rocks were analyzed, which will provide a scientific basis for a support technology in large-section roadways under complicated geological conditions and lay a foundation for the popularization and application of a full-length anchor support system under special geological conditions.展开更多
基金the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos.70533050 and 50674089)+1 种基金the National Foundation for the Youth of China (No.50904068)the Research Fund for the Youth of China University of Mining & Technology (No.OY091223)
文摘Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in controlling the effect of an extremely thick igneous rock, found above a main mining coal seam in an area prone to coal mine disasters in the Haizi Coal Mine. The results show that this igneous rock, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close. The presence of igneous rock plays an important role in rock bursts, mine floods, gas outburst and surface subsidence in coal mines. By analyzing the rules in controlling the effect of this igneous rock, we provide useful references for safety and high efficiency mining in coal mines under special geological conditions.
基金Supported bythe National Natural Science Foundation of China (50904024) the State Key Laboratory Research Fund of Coal Resources and Mine Safety of China University of Mining & Technology (10KF02) the Doctoral Fund of Henan Polytechnic University (B2009-66)
文摘Coal roadway support is the foundation and strong guarantee of safe coal production. With the FLAC3D numerical simulation, the roadway fulllength anchor support mechanism was studied, and the full-length anchor forcetransferring mechanism and stressfield distribution formed by roadway surrounding rocks were analyzed, which will provide a scientific basis for a support technology in large-section roadways under complicated geological conditions and lay a foundation for the popularization and application of a full-length anchor support system under special geological conditions.