Consider the following Schr?dinger-Poisson-Slater system, (P) where ω 〉 0, λ 〉 0 and β 〉 0 are real numbers, p ∈ (1, 2). For β=0, it is known that problem (P) has no nontrivial solution if λ 〉 0 suit...Consider the following Schr?dinger-Poisson-Slater system, (P) where ω 〉 0, λ 〉 0 and β 〉 0 are real numbers, p ∈ (1, 2). For β=0, it is known that problem (P) has no nontrivial solution if λ 〉 0 suitably large. When β 〉 0, -β/|x| is an important potential in physics, which is called external Coulomb potential. In this paper, we find that (P) with β 〉 0 has totally different properties from that of β = 0. For β 〉 0, we prove that (P) has a ground state and multiple solutions if λ 〉 cp,ω, where cp,ω 〉 0 is a constant which can be expressed explicitly via ω and p.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11071245,11171339 and 11201486)supported by the Fundamental Research Funds for the Central Universities
文摘Consider the following Schr?dinger-Poisson-Slater system, (P) where ω 〉 0, λ 〉 0 and β 〉 0 are real numbers, p ∈ (1, 2). For β=0, it is known that problem (P) has no nontrivial solution if λ 〉 0 suitably large. When β 〉 0, -β/|x| is an important potential in physics, which is called external Coulomb potential. In this paper, we find that (P) with β 〉 0 has totally different properties from that of β = 0. For β 〉 0, we prove that (P) has a ground state and multiple solutions if λ 〉 cp,ω, where cp,ω 〉 0 is a constant which can be expressed explicitly via ω and p.