AIM:To assess the application of the Kasai procedure in the surgical management of hilar bile duct strictures.METHODS:Ten consecutive patients between 2005 and 2011 with hilar bile duct strictures who underwent the Ka...AIM:To assess the application of the Kasai procedure in the surgical management of hilar bile duct strictures.METHODS:Ten consecutive patients between 2005 and 2011 with hilar bile duct strictures who underwent the Kasai procedure were retrospectively analyzed.Kasai portoenterostomy with the placement of biliary stents was performed in all patients.Clinical characteristics,postoperative complications,and long-term outcomes were analyzed.All patients were followed up for 2-60 mo postoperatively.RESULTS:Patients were classified according to the Bismuth classification of biliary strictures.There were two Bismuth Ⅲ and eight Bismuth Ⅳ lesions.Six lesions were benign and four were malignant.Of the benign lesions,three were due to post-cholecystectomy injury,one to trauma,one to inflammation,and one to inflammatory pseudotumor.Of the malignant lesions,four were due to hilar cholangiocarcinoma.All patients underwent Kasai portoenterostomy with the placement of biliary stents.There were no perioperative deaths.One patient experienced anastomotic leak and was managed conservatively.No other complications occurred perioperatively.During the follow-up period,all patients reported a good quality of life.CONCLUSION:The Kasai procedure combined with biliary stents may be appropriate for patients with hilar biliary stricture that cannot be managed by standard surgical methods.展开更多
When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused ...When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused by radioactive substances, With the aid of geologists, a model of a hypothetical area was elaborated and described with the use of geological and hydrogeological parameters. The volume of isotopes released out of the massif at the borderline of the near/far field from the DGR was determined. The paper results showed that ground water flow and transport of substances within the area were first to be determined. The Flow123D SW was used for the determination. The resulting outcome represents a determination of transported substances concentration depending on time. The disadvantage of the model is the fact that all the input parameters were set deterministically. The problem is solved by using the sensitivity analysis (changing the input parameters) or using the Monte Carlo Method. The major results are: calculations of the radionuclide concentrations in the elements depending on time and determination of parameters that have the biggest impact on the sensitivity of the whole model.展开更多
Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of mul...Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.展开更多
Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the fac...Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.展开更多
The use of literature, logical reasoning and other research methods are used in this thesis, classification and analysis of the definition of incentive methods, motivation methods are also stated in this paper, and th...The use of literature, logical reasoning and other research methods are used in this thesis, classification and analysis of the definition of incentive methods, motivation methods are also stated in this paper, and this article also combine with students' psychological characteristics, different teaching content, teaching methods together, discussed how to stimulate students' interest in sports and mobilize students' enthusiasm, initiative by motivation methods in the sports teaching, thus promoting teaching effectiveness, improve teaching quality, provide some theoretical reference for improving the quality of teaching physical education. The results showed that: we have already made some researches in the stimulation methods in teaching sports, but few are studied combining with the psychological characteristics of students展开更多
Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Te...Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Technology of Organoelement Compounds). Nanometallocarbosilanes were synthesized by thermal co-condensation of oligocarbosilanes and alkyl amides of refractory metals. Initial, intermediate and final products of side reactions were characterized by 1H, 13C, 29Si NMR (nuclear magnetic resonance), IR (infra-red) spectroscopy, GPC (gel-penetrating chromatography), TGA (thermal gravimetric analysis), TEM (transmission electron microscopy), SEM (scanning electron microscopy), RES (X-ray phase analysis) and elemental analysis. The proposed synthesis method of nanometallocarbosilanes was lbund to produce fusable soluble organosilicon oligomers with homogeneous distribution of nanoscale (10-20 nm) metal particles in the oligomer matrix. A computational model of the group and elemental composition of nanometallocarbosilanes was developed; it was shown that they are molecular globules of near-spherical shape and rigid polycyclic structure. Thermochemical treatment of nanometallocarbosilanes leads to SiC-nanoceramics (a high yield of up to 75-80 mass%) modified by metal nanoparticles (20-30 nm) contributing to its stabilization. The application of preceramic oxygen-free nanometallocarbosilanes will make it possible to advance in solving the problem of ceramic composite materials with long-term resistance at temperatures above 1,500 ℃ in oxidizing environments.展开更多
A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by ...A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.展开更多
To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent im...To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.展开更多
The critical properties of the planar rotator model with chiral Dzyaloshinsky-Moriya interaction are analyzed using a hybrid Monte Carlo method.Simulations on different lattices conform an observation that there is an...The critical properties of the planar rotator model with chiral Dzyaloshinsky-Moriya interaction are analyzed using a hybrid Monte Carlo method.Simulations on different lattices conform an observation that there is an XY-like Berezinskii-Kosterlitz-Thouless (BKT) phase transition in this model.The ground state and some thermodynamics properties are also discussed.展开更多
In this paper, for time-to-event data, we propose a new statistical framework for casual inference in evaluating clinical utility of predictive biomarkers and in selecting an optimal treatment for a particular patient...In this paper, for time-to-event data, we propose a new statistical framework for casual inference in evaluating clinical utility of predictive biomarkers and in selecting an optimal treatment for a particular patient. This new casual framework is based on a new concept, called Biomarker Adjusted Treatment Effect (BATE) curve. The BATE curve can be used for assessing clinical utility of a predictive biomarker, for designing a subsequent confirmation trial, and for guiding clinical practice. We then propose semi-p^rametric methods for estimating the BATE curves of biomarkers and establish asymptotic results of the proposed estimators for the BATE curves. We also conduct extensive simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrate the application of the proposed method in a real-world data set.展开更多
We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced...We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the nae continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak,intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.展开更多
Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-rang...Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.展开更多
文摘AIM:To assess the application of the Kasai procedure in the surgical management of hilar bile duct strictures.METHODS:Ten consecutive patients between 2005 and 2011 with hilar bile duct strictures who underwent the Kasai procedure were retrospectively analyzed.Kasai portoenterostomy with the placement of biliary stents was performed in all patients.Clinical characteristics,postoperative complications,and long-term outcomes were analyzed.All patients were followed up for 2-60 mo postoperatively.RESULTS:Patients were classified according to the Bismuth classification of biliary strictures.There were two Bismuth Ⅲ and eight Bismuth Ⅳ lesions.Six lesions were benign and four were malignant.Of the benign lesions,three were due to post-cholecystectomy injury,one to trauma,one to inflammation,and one to inflammatory pseudotumor.Of the malignant lesions,four were due to hilar cholangiocarcinoma.All patients underwent Kasai portoenterostomy with the placement of biliary stents.There were no perioperative deaths.One patient experienced anastomotic leak and was managed conservatively.No other complications occurred perioperatively.During the follow-up period,all patients reported a good quality of life.CONCLUSION:The Kasai procedure combined with biliary stents may be appropriate for patients with hilar biliary stricture that cannot be managed by standard surgical methods.
文摘When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused by radioactive substances, With the aid of geologists, a model of a hypothetical area was elaborated and described with the use of geological and hydrogeological parameters. The volume of isotopes released out of the massif at the borderline of the near/far field from the DGR was determined. The paper results showed that ground water flow and transport of substances within the area were first to be determined. The Flow123D SW was used for the determination. The resulting outcome represents a determination of transported substances concentration depending on time. The disadvantage of the model is the fact that all the input parameters were set deterministically. The problem is solved by using the sensitivity analysis (changing the input parameters) or using the Monte Carlo Method. The major results are: calculations of the radionuclide concentrations in the elements depending on time and determination of parameters that have the biggest impact on the sensitivity of the whole model.
文摘Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.
文摘Mining method selection is the first and the most critical problem in mine design and depends on some parameters such as geotechnical and geological features and economic and geographic factors. In this paper, the factors affecting mining method selection are determined. These factors include shape, thick- ness, depth, slope, RMR and RSS of the orebody, RMR and RSS of the hanging wall and footwall. Then, the priorities of these factors are calculated. In order to calculate the priorities of factors and select the best mining method for Qapiliq salt mine, Iran, based on these priorities, fuzzy analytical hierarchy process (AHP) technique is used. For this purpose, a questionnaire was prepared and was given to the associated experts. Finally, after a comparison carried out based on the effective factors, between the four mining methods including area mining, room and pillar, cut and fill and stope and pillar methods, the stope and nillar mining method was selected as the most suitable method to this mine.
文摘The use of literature, logical reasoning and other research methods are used in this thesis, classification and analysis of the definition of incentive methods, motivation methods are also stated in this paper, and this article also combine with students' psychological characteristics, different teaching content, teaching methods together, discussed how to stimulate students' interest in sports and mobilize students' enthusiasm, initiative by motivation methods in the sports teaching, thus promoting teaching effectiveness, improve teaching quality, provide some theoretical reference for improving the quality of teaching physical education. The results showed that: we have already made some researches in the stimulation methods in teaching sports, but few are studied combining with the psychological characteristics of students
文摘Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Technology of Organoelement Compounds). Nanometallocarbosilanes were synthesized by thermal co-condensation of oligocarbosilanes and alkyl amides of refractory metals. Initial, intermediate and final products of side reactions were characterized by 1H, 13C, 29Si NMR (nuclear magnetic resonance), IR (infra-red) spectroscopy, GPC (gel-penetrating chromatography), TGA (thermal gravimetric analysis), TEM (transmission electron microscopy), SEM (scanning electron microscopy), RES (X-ray phase analysis) and elemental analysis. The proposed synthesis method of nanometallocarbosilanes was lbund to produce fusable soluble organosilicon oligomers with homogeneous distribution of nanoscale (10-20 nm) metal particles in the oligomer matrix. A computational model of the group and elemental composition of nanometallocarbosilanes was developed; it was shown that they are molecular globules of near-spherical shape and rigid polycyclic structure. Thermochemical treatment of nanometallocarbosilanes leads to SiC-nanoceramics (a high yield of up to 75-80 mass%) modified by metal nanoparticles (20-30 nm) contributing to its stabilization. The application of preceramic oxygen-free nanometallocarbosilanes will make it possible to advance in solving the problem of ceramic composite materials with long-term resistance at temperatures above 1,500 ℃ in oxidizing environments.
文摘A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.
基金Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704c), the National Science Technology Support Program of China (No. 2013BAH03B01), and the Zhejiang Provincial Natural Science Foundation of China (No. LY14F020028)
文摘To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.
基金Supported by the Foundation of Hubei Department of Education under Grant No.Q20101602the National Natural Science Foundation of China under Grant No.11147180
文摘The critical properties of the planar rotator model with chiral Dzyaloshinsky-Moriya interaction are analyzed using a hybrid Monte Carlo method.Simulations on different lattices conform an observation that there is an XY-like Berezinskii-Kosterlitz-Thouless (BKT) phase transition in this model.The ground state and some thermodynamics properties are also discussed.
基金supported by a Core Investigator,Research Career Scientist(Grant No.RCS OS-196)Biostatistics Unit Director at the Northwest HSR&D Center of Excellence,Department of Veterans Affairs Medical Center,Seattle,WA and Department of Veterans Affairs,Veterans Health Administration,Health Services Research and Development Service,project(Grant No.XVA61-036)
文摘In this paper, for time-to-event data, we propose a new statistical framework for casual inference in evaluating clinical utility of predictive biomarkers and in selecting an optimal treatment for a particular patient. This new casual framework is based on a new concept, called Biomarker Adjusted Treatment Effect (BATE) curve. The BATE curve can be used for assessing clinical utility of a predictive biomarker, for designing a subsequent confirmation trial, and for guiding clinical practice. We then propose semi-p^rametric methods for estimating the BATE curves of biomarkers and establish asymptotic results of the proposed estimators for the BATE curves. We also conduct extensive simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrate the application of the proposed method in a real-world data set.
基金supported by Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/J001392/1)the Danish Council for Independent Research under the Sapere Aude program
文摘We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the nae continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak,intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.
基金supported by National Natural Science Foundation of China (Grant Nos.11101276 and 91130012)the support from the Alexander von Humboldt Foundation for a research stay at the Institute of Compututional Physics,University of Stuttgart
文摘Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.